scholarly journals Robot-Assisted Floor Surface Profiling Using Low-Cost Sensors

2019 ◽  
Vol 11 (22) ◽  
pp. 2626
Author(s):  
Scott Wilson ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

Low cost and accurate 3D surface profiling can help in numerous industry applications including inspection tasks, cleaning, minimizing bumps in navigation of non-uniform terrain, aid navigation, and road/pavement condition analysis. However, most of the available systems are costly or inaccessible for widespread use. This research presents investigation into the capability of cheap and accessible sensors to capture the floor surface profile information. A differential drive robotic platform has been developed to perform testing and conduct the research. 2D localization methods are extrapolated into 3D for the floor capturing process. Two different types of sensors, a 2D laser scanner and an RGB-D camera, are used for comparison of the floor profile capture ability. The robotic system is able to successfully capture the floor surface profile of a number of different type floors such as carpet, asphalt, and a coated floor. A key finding is that the surface itself is a significant factor on the measured profile, i.e. dirt or differing materials can cause false height measurements. Overall the methodology has proved a successful real time solution for creating a point cloud of the floor surface.

Sensors ◽  
2012 ◽  
Vol 12 (7) ◽  
pp. 9046-9054 ◽  
Author(s):  
María-Eugenia Polo ◽  
Ángel M. Felicísimo
Keyword(s):  
Low Cost ◽  

2018 ◽  
Vol 10 (7) ◽  
pp. 1094 ◽  
Author(s):  
Chiara Torresan ◽  
Andrea Berton ◽  
Federico Carotenuto ◽  
Ugo Chiavetta ◽  
Franco Miglietta ◽  
...  

2019 ◽  
Vol 93 (3) ◽  
pp. 411-429 ◽  
Author(s):  
Maria Immacolata Marzulli ◽  
Pasi Raumonen ◽  
Roberto Greco ◽  
Manuela Persia ◽  
Patrizia Tartarino

Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-professional’ instruments and automating estimates of dendrometric parameters.


2019 ◽  
Vol 28 (12) ◽  
pp. 1647-1656
Author(s):  
Olszewski Raphael ◽  
Szyper-Szczurowska Joanna ◽  
Opach Maciej ◽  
Bednarczyk Piotr ◽  
Zapala Jan ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 3084 ◽  
Author(s):  
Mohamed Abdellatif ◽  
Harriet Peel ◽  
Anthony G. Cohn ◽  
Raul Fuentes

Detection of road pavement cracks is important and needed at an early stage to repair the road and extend its lifetime for maintaining city roads. Cracks are hard to detect from images taken with visible spectrum cameras due to noise and ambiguity with background textures besides the lack of distinct features in cracks. Hyperspectral images are sensitive to surface material changes and their potential for road crack detection is explored here. The key observation is that road cracks reveal the interior material that is different from the worn surface material. A novel asphalt crack index is introduced here as an additional clue that is sensitive to the spectra in the range 450–550 nm. The crack index is computed and found to be strongly correlated with the appearance of fresh asphalt cracks. The new index is then used to differentiate cracks from road surfaces. Several experiments have been made, which confirmed that the proposed index is effective for crack detection. The recall-precision analysis showed an increase in the associated F1-score by an average of 21.37% compared to the VIS2 metric in the literature (a metric used to classify pavement condition from hyperspectral data).


2019 ◽  
Vol 86 (9) ◽  
pp. 478-486 ◽  
Author(s):  
Jörg Seewig ◽  
Matthias Eifler ◽  
Dorothee Hüser ◽  
Rudolf Meeß

AbstractThe standard ISO 13565-2 defines the Rk parameters for the functional characterisation of technical surfaces. So far, no particular material measures for the calibration of these parameters have been defined in the international standardization. For the application and the functional behaviour of technical surfaces the Rk parameters however have a critical significance, so there is a demand by the industry to calibrate these parameters as they are increasingly applied for the quality assessment of workpieces. In the present paper, a proposal for suitable material measures is presented. An algorithm is described, which transforms the data of a real measured profile in a way that the exact defined parameters of Rk, Rpk and Rvk are equated. The material measures geometry corresponds to its later application and the target parameters are almost freely selectable. The approach for transforming surface profile data with the aid of the Abbott curve is introduced generically, solves an inverse problem and considers the influences from the manufacturing and measuring process. The designed material measure is manufactured with the aid of ultra-precision turning. In matters of the aspired industrial application, comparison measurements are carried out in order to examine the practical abilities of the material measure and the repeatability of the approach is proven.


2020 ◽  
Vol 12 (11) ◽  
pp. 1889 ◽  
Author(s):  
Marion Jaud ◽  
Stéphane Bertin ◽  
Mickaël Beauverger ◽  
Emmanuel Augereau ◽  
Christophe Delacourt

The present article describes a new and efficient method of Real Time Kinematic (RTK) Global Navigation Satellite System (GNSS) assisted terrestrial Structure-from-Motion (SfM) photogrammetry without the need for Ground Control Points (GCPs). The system only requires a simple frame that mechanically connects a RTK GNSS antenna to the camera. The system is low cost, easy to transport, and offers high autonomy. Furthermore, not requiring GCPs enables saving time during the in situ acquisition and during data processing. The method is tested for coastal cliff monitoring, using both a Reflex camera and a Smartphone camera. The quality of the reconstructions is assessed by comparison to a synchronous Terrestrial Laser Scanner (TLS) acquisition. The results are highly satisfying with a mean error of 0.3 cm and a standard deviation of 4.7 cm obtained with the Nikon D800 Reflex camera and, respectively, a mean error of 0.2 cm and a standard deviation of 3.8 cm obtained with the Huawei Y5 Smartphone camera. This method will be particularly interesting when simplicity, portability, and autonomy are desirable. In the future, it would be transposable to participatory science programs, while using an open RTK GNSS network.


Author(s):  
Boris Goenaga ◽  
Shane Underwood ◽  
Luis Fuentes

Speed bumps are efficient traffic calming devices that allow transport authorities to control vehicle speeds and improve safety in specific locations. Though frequently used in residential areas, they have become increasing prevalent in other higher volume roadways (particularly in developing countries), because of their effectiveness, low-cost of implementation, and easy installation process. However, in these countries there is no proper technical guidance for speed bump design and implementation, which is why one can often find these devices placed on an arterial highway or on roads where the proportion of trucks is high. The most important consequence of placing a speed bump on a road with large numbers of trucks is that the pavement deterioration process will accelerate as a result of the induced vibrations and bouncing of a truck’s suspension. In this paper the relationship between the bump geometry—length and height—and the dynamic load transmitted to the pavement is studied. A full truck model has been used to simulate the vehicle dynamics while passing over the bump, to estimate the demand imposed over the pavement. Damage was calculated for each simulation scenario using a combination of linear-elastic analysis and empirical damage functions. The geometry that leads to less damage is the circular, with a minimum length of two meters and a maximum height of ten centimeters.


Sign in / Sign up

Export Citation Format

Share Document