scholarly journals Variations in Winter Surface Temperature of the Purog Kangri Ice Field, Qinghai–Tibetan Plateau, 2001–2018, Using MODIS Data

2020 ◽  
Vol 12 (7) ◽  
pp. 1133
Author(s):  
Yufan Qie ◽  
Ninglian Wang ◽  
Yuwei Wu ◽  
An’an Chen

In the context of global warming, the land surface temperature (LST) from remote sensing data is one of the most useful indicators to directly quantify the degree of climate warming in high-altitude mountainous areas where meteorological observations are sparse. Using the daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A1 V6) after eliminating pixels that might be contaminated by clouds, this paper analyzes temporal and spatial variations in the mean LST on the Purog Kangri ice field, Qinghai–Tibetan Plateau, in winter from 2001 to 2018. There was a large increasing trend in LST (0.116 ± 0.05 °C·a−1) on the Purog Kangri ice field during December, while there was no evident LST rising trend in January and February. In December, both the significantly decreased albedo (−0.002 a−1, based on the MOD10A1 V6 albedo product) on the ice field surface and the significantly increased number of clear days (0.322 d·a−1) may be the main reason for the significant warming trend in the ice field. In addition, although the two highest LST of December were observed in 2017 and 2018, a longer data set is needed to determine whether this is an anomaly or a hint of a warmer phase of the Purog Kangri ice field in December.

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1315
Author(s):  
Xiaoying Ouyang ◽  
Dongmei Chen ◽  
Shugui Zhou ◽  
Rui Zhang ◽  
Jinxin Yang ◽  
...  

Satellite-derived lake surface water temperature (LSWT) measurements can be used for monitoring purposes. However, analyses based on the LSWT of Lake Ontario and the surrounding land surface temperature (LST) are scarce in the current literature. First, we provide an evaluation of the commonly used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived LSWT/LST (MOD11A1 and MYD11A1) using in situ measurements near the area of where Lake Ontario, the St. Lawrence River and the Rideau Canal meet. The MODIS datasets agreed well with ground sites measurements from 2015–2017, with an R2 consistently over 0.90. Among the different ground measurement sites, the best results were achieved for Hill Island, with a correlation of 0.99 and centered root mean square difference (RMSD) of 0.73 K for Aqua/MYD nighttime. The validated MODIS datasets were used to analyze the temperature trend over the study area from 2001 to 2018, through a linear regression method with a Mann–Kendall test. A slight warming trend was found, with 95% confidence over the ground sites from 2003 to 2012 for the MYD11A1-Night datasets. The warming trend for the whole region, including both the lake and the land, was about 0.17 K year−1 for the MYD11A1 datasets during 2003–2012, whereas it was about 0.06 K year−1 during 2003–2018. There was also a spatial pattern of warming, but the trend for the lake region was not obviously different from that of the land region. For the monthly trends, the warming trends for September and October from 2013 to 2018 are much more apparent than those of other months.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chunlei Meng ◽  
Huoqing Li

AbstractFengyun-4A is the new generation of Chinese geostationary meteorological satellites. Land surface albedo, land surface emissivity and land surface temperature are key states for land surface modelling. In this paper, the land surface albedo, land surface emissivity and land surface temperature data from Fengyun-4A were assimilated into the Integrated Urban land Model. The Fengyun-4A data are one of the data sources for the land data assimilation system which devoted to produce the high spatial and temporal resolution, multiple parameters near real-time land data sets. The Moderate-Resolution Imaging Spectroradiometer (MODIS) LSA and LSE data, the Institute of Atmospheric Physics, China Academy of Sciences (IAP) 325 m tower observation data and the observed 5 cm and 10 cm soil temperature data in more than 100 sites are used for validation. The results indicate the MODIS land surface albedo is much smaller than the Fengyun-4A and is superior to the Fengyun-4A for the Institute of Atmospheric Physics, China Academy of Sciences 325 m tower site. The Moderate-Resolution Imaging Spectroradiometer land surface emissivity is smaller than the Fengyun-4A in barren land surface and the differences is relatively small for other land use and land cover categories. In most regions of the research area, the Fengyun-4A land surface albedo and land surface emissivity are larger than those of the simulations. After the land surface albedo assimilation, in most regions the simulated net radiation was decreased. After the land surface emissivity assimilation, in most regions the simulated net radiation was increased. After the land surface temperature assimilation, the biases of the land surface temperature were decreased apparently; the biases of the daily average 5 cm and 10 cm soil temperature were decreased.


2021 ◽  
Author(s):  
Getachew Bayable ◽  
Getnet Alemu

Abstract The aggravating deforestation, industrialization and urbanization are increasingly becoming the principal causes for environmental challenges worldwide. As a result, satellite-based remote sensing helps to explore the environmental challenges spatially and temporally. This investigation analyzed the spatiotemporal discrepancies in Land Surface Temperature (LST) and the link with elevation in Amhara region, Ethiopia. The Moderate Resolution Imaging Spectroradiometer (MODIS) LST data (2001–2020) was used. The pixel-based linear regression model was employed to explore the spatiotemporal discrepancies of LST changes pixel-wise. Furthermore, Sen's slope and Mann-Kendall were used for determining the extent of temporal shifts of the areal average LST and evaluating trends in areal average LST values, respectively. Coefficient of Variation (CV) was calculated to examine spatial and temporal discrepancies in seasonal and annual LST for each pixel. The distribution of average seasonal LST spatially ranged from 43.45–16.62℃, 39.89–14.59℃, 50.39-21.102℃ and 43.164–20.39℃ for autumn (September-November), summer (June-August), spring (March-May) and winter (December-February) seasons, respectively. The seasonal LST CV varied from1.096-10.72%, 0.7–11.06%, 1.29–14.76% and 2.19–10.35% for average autumn, summer, spring and winter seasons, respectively. The seasonal spatial LST trend varied from − 0.7 − 0.16, -0.4-0.224, 0.6 − 0.19 and − 0.6 − 0.32 for average autumn, summer, spring and winter seasons, respectively. Besides, the annual spatial LST slope varied from − 0.58 − 0.17. An insignificantly declining trend in LST shown at 0.036℃ yr− 1, 0.041℃ yr− 1, 0.074℃ yr− 1, 0.005℃ yr− 1 in autumn, summer, spring and winter seasons (P < 0.05), respectively. Moreover, the annual variations of mean LST decreased insignificantly at 0.046℃ yr− 1. Generally, the LST is tremendously variable in space and time and negatively correlated with an elevation.


2010 ◽  
Vol 49 (8) ◽  
pp. 1665-1680 ◽  
Author(s):  
Yunjun Yao ◽  
Shunlin Liang ◽  
Qiming Qin ◽  
Kaicun Wang

Abstract Monitoring land surface drought using remote sensing data is a challenge, although a few methods are available. Evapotranspiration (ET) is a valuable indicator linked to land drought status and plays an important role in surface drought detection at continental and global scales. In this study, the evaporative drought index (EDI), based on the estimated actual ET and potential ET (PET), is described to characterize the surface drought conditions. Daily actual ET at 4-km resolution for April–September 2003–05 across the continental United States is estimated using a simple improved ET model with input solar radiation acquired by Moderate-Resolution Imaging Spectroradiometer (MODIS) at a spatial resolution of 4 km and input meteorological parameters from NCEP Reanalysis-2 data at a spatial resolution of 32 km. The PET is also calculated using some of these data. The estimated actual ET has been rigorously validated with ground-measured ET at six Enhanced Facility sites in the Southern Great Plains (SGP) of the Atmosphere Radiation Measurement Program (ARM) and four AmeriFlux sites. The validation results show that the bias varies from −11.35 to 27.62 W m−2 and the correlation coefficient varies from 0.65 to 0.86. The monthly composites of EDI at 4-km resolution during April–September 2003–05 are found to be in good agreement with the Palmer Z index anomalies, but the advantage of EDI is its finer spatial resolution. The EDI described in this paper incorporates information about energy fluxes in response to soil moisture stress without requiring too many meteorological input parameters, and performs well in assessing drought at continental scales.


2020 ◽  
Vol 8 (2) ◽  
pp. 15-21
Author(s):  
Azad Rasul ◽  
Luqman W. Omar

Earthquake every year leads to human and material losses and unpredictability of it by now makes this natural disaster worsen. The objective of the current study was to determine the anomalies in land surface temperature (LST) in areas affected by earthquakes. In this research, three earthquakes (M >6) were studied. Moderate Resolution Imaging Spectroradiometer Aqua and Terra day and night LST data used from 2003 to 2018. The interquartile range (IQR) and mean ± 2σ methods utilized to select anomalies. As a result, based on the IQR method, no prior and after anomaly detected in selected cases and data. Based on mean ± 2σ, usually positive anomaly occurred during daytime. However, negative (or positive) anomaly occurred during the nighttime before the Mexico and Bolivia earthquakes. During 10 days after the earthquake, sometimes a negative anomaly detected.


Sign in / Sign up

Export Citation Format

Share Document