scholarly journals Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy

2020 ◽  
Vol 12 (8) ◽  
pp. 1275 ◽  
Author(s):  
Salvatore Falanga Bolognesi ◽  
Edoardo Pasolli ◽  
Oscar Belfiore ◽  
Carlo De Michele ◽  
Guido D’Urso

Lack of accurate and up-to-date data associated with irrigated areas and related irrigation amounts is hampering the full implementation and compliance of the Water Framework Directive (WFD). In this paper, we describe the framework that we developed and implemented within the DIANA project to map the actual extent of irrigated areas in the Campania region (Southern Italy) during the 2018 irrigation season. For this purpose, we considered 202 images from the Harmonized Landsat Sentinel-2 (HLS) products (57 images from Landsat 8 and 145 images from Sentinel-2). Such data were preprocessed in order to extract a multitemporal Normalized Difference Vegetation Index (NDVI) map, which was then smoothed through a gap-filling algorithm. We further integrated data coming from high-resolution (4 km) global satellite precipitation Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) products. We collected an extensive ground truth in the field represented by 2992 data points coming from three main thematic classes: bare soil and rainfed (class 0), herbaceous (class 1), and tree crop (class 2). This information was exploited to generate irrigated area maps by adopting a machine learning classification approach. We compared six different types of classifiers through a cross-validation approach and found that, in general, random forests, support vector machines, and boosted decision trees exhibited the best performances in terms of classification accuracy and robustness to different tested scenarios. We found an overall accuracy close to 90% in discriminating among the three thematic classes, which highlighted promising capabilities in the detection of irrigated areas from HLS products.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2236 ◽  
Author(s):  
Viviana Gavilán ◽  
Mario Lillo-Saavedra ◽  
Eduardo Holzapfel ◽  
Diego Rivera ◽  
Angel García-Pedrero

Efficient water management in agriculture requires a precise estimate of evapotranspiration ( E T ). Although local measurements can be used to estimate surface energy balance components, these values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture environment. This extrapolation can be done using satellite images that provide information in visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric behavior of vegetation that is highly correlated with the E T . In this context, our working hypothesis states that it is possible to generate a strategy of integration and harmonization of the Normalized Difference Vegetation Index ( N D V I ) obtained from Landsat-8 ( L 8 ) and Sentinel-2 ( S 2 ) sensors in order to obtain an N D V I time series used to estimate E T through fit equations specific to each crop type during an agricultural season (December 2017–March 2018). Based on the obtained results it was concluded that it is possible to estimate E T using an N D V I time series by integrating data from both sensors L 8 and S 2 , which allowed to carry out an updated seasonal water balance over study site, improving the irrigation water management both at plot and water distribution system scale.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2019 ◽  
Vol 11 (21) ◽  
pp. 2515 ◽  
Author(s):  
Ana Navarro ◽  
Joao Catalao ◽  
Joao Calvao

In Portugal, cork oak (Quercus suber L.) stands cover 737 Mha, being the most predominant species of the montado agroforestry system, contributing to the economic, social and environmental development of the country. Cork oak decline is a known problem since the late years of the 19th century that has recently worsened. The causes of oak decline seem to be a result of slow and cumulative processes, although the role of each environmental factor is not yet established. The availability of Sentinel-2 high spatial and temporal resolution dense time series enables monitoring of gradual processes. These processes can be monitored using spectral vegetation indices (VI) as their temporal dynamics are expected to be related with green biomass and photosynthetic efficiency. The Normalized Difference Vegetation Index (NDVI) is sensitive to structural canopy changes, however it tends to saturate at moderate-to-dense canopies. Modified VI have been proposed to incorporate the reflectance in the red-edge spectral region, which is highly sensitive to chlorophyll content while largely unaffected by structural properties. In this research, in situ data on the location and vitality status of cork oak trees are used to assess the correlation between chlorophyll indices (CI) and NDVI time series trends and cork oak vitality at the tree level. Preliminary results seem to be promising since differences between healthy and unhealthy (diseased/dead) trees were observed.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 139 ◽  
Author(s):  
Yingying Yang ◽  
Taixia Wu ◽  
Shudong Wang ◽  
Jing Li ◽  
Farhan Muhanmmad

Evergreen trees play a significant role in urban ecological services, such as air purification, carbon and oxygen balance, and temperature and moisture regulation. Remote sensing represents an essential technology for obtaining spatiotemporal distribution data for evergreen trees in cities. However, highly developed subtropical cities, such as Nanjing, China, have serious land fragmentation problems, which greatly increase the difficulty of extracting evergreen trees information and reduce the extraction precision of remote-sensing methods. This paper introduces a normalized difference vegetation index coefficient of variation (NDVI-CV) method to extract evergreen trees from remote-sensing data by combining the annual minimum normalized difference vegetation index (NDVIann-min) with the CV of a Landsat 8 time-series NDVI. To obtain an intra-annual, high-resolution time-series dataset, Landsat 8 cloud-free and partially cloud-free images over a three-year period were collected and reconstructed for the study area. Considering that the characteristic growth of evergreen trees remained nearly unchanged during the phenology cycle, NDVIann-min is the optimal phenological node to separate this information from that of other vegetation types. Furthermore, the CV of time-series NDVI considers all of the phenologically critical phases; therefore, the NDVI-CV method had higher extraction accuracy. As such, the approach presented herein represents a more practical and promising method based on reasonable NDVIann-min and CV thresholds to obtain spatial distribution data for evergreen trees. The experimental verification results indicated a comparable performance since the extraction accuracy of the model was over 85%, which met the classification accuracy requirements. In a cross-validation comparison with other evergreen trees’ extraction methods, the NDVI-CV method showed higher sensitivity and stability.


2020 ◽  
Vol 194 ◽  
pp. 05047
Author(s):  
Rong Liu ◽  
Fang Huang ◽  
Yue Ren

Ecosystem functional types (EFTs) are the patches of land surface showing similar in carbon dynamics. EFTs are not defined by the structure and composition of vegetation and represent the spatial heterogeneity of ecosystem functions. Identifying EFTs based on low-resolution satellite remote sensing data cannot satisfy the needs of fine-scale characterization of regional ecosystem functional patterns. Here, taking Zhenlai County, Northeast China as an example, the heterogeneity in ecosystem functions was characterized by identifying EFTs from Sentinel-2 time series data using ISODATA algorithm. Ecosystem functional attributes derived from dynamics of the normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (FAPAR), and canopy water content (CWC) in the growing season were calculated. The correspondence analysis (CA) method was used to reveal relationships between the EFTs and land cover types. Our results showed that the nine selected remotely sensed variables indicating carbon and water flux of the regional ecosystems could be adopted in ecosystem functions classification. The obtained EFTs based on Sentinel-2 images reflected the internal structure of carbon balance well and the distribution pattern of ecosystem functional diversity a fine scale. This study helps to understand the functional heterogeneity pattern of temperate terrestrial ecosystems.


Author(s):  
S. Park ◽  
J. Im

Many satellite sensors including Landsat series have been extensively used for land cover classification. Studies have been conducted to mitigate classification problems associated with the use of single data (e.g., such as cloud contamination) through multi-sensor data fusion and the use of time series data. This study investigated two areas with different environment and climate conditions: one in South Korea and the other in US. Cropland classification was conducted by using multi-temporal Landsat 5, Radarsat-1 and digital elevation models (DEM) based on two machine learning approaches (i.e., random forest and support vector machines). Seven classification scenarios were examined and evaluated through accuracy assessment. Results show that SVM produced the best performance (overall accuracy of 93.87%) when using all temporal and spectral data as input variables. Normalized Difference Water Index (NDWI), SAR backscattering, and Normalized Difference Vegetation Index (NDVI) were identified as more contributing variables than the others for cropland classification.


Author(s):  
S. Paul ◽  
D. N. Kumar

<p><strong>Abstract.</strong> Classification of crops is very important to study different growth stages and forecast yield. Remote sensing data plays a significant role in crop identification and condition assessment over a large spatial scale. Importance of Normalized Difference Indices (NDIs) along with surface reflectances of remotely sensed spectral bands have been evaluated for classification of eight types of Rabi crops utilizing the Landsat-8 and Sentinel-2 datasets and performances of both the satellites are compared. Landsat-8 and Sentinel-2A images are acquired for the location of crops and seven and nine spectral bands are utilized respectively for the classification. Experiments are carried out considering the different combinations of surface reflectances of spectral bands and optimal NDIs as features in support vector machine classifier. Optimal NDIs are selected from the set of <sup>7</sup>C<sub>2</sub> and <sup>9</sup>C<sub>2</sub> NDIs of Landsat-8 and Sentinel-2A datasets respectively using the partial informational correlation measure, a nonparametric feature selection approach. Few important vegetation indices (e.g. enhanced vegetation index) are also experimented in combination with the surface reflectances and NDIs to perform the crop classification. It has been observed that combination of surface reflectances and optimal NDIs can classify the crops more efficiently. The average overall accuracy of 80.96% and 88.16% are achieved using the Landsat-8 and Sentinel-2A datasets respectively. It has been observed that all the crop classes except Paddy and Cotton achieve producer accuracy and user accuracy of more than 75% and 85% respectively. This technique can be implemented for crop identification with adequate accessibility of crop information.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 529 ◽  
Author(s):  
Hualiang Liu ◽  
Feizhou Zhang ◽  
Lifu Zhang ◽  
Yukun Lin ◽  
Siheng Wang ◽  
...  

Land cover data is crucial for earth system modelling, natural resources management, and conservation planning. Remotely sensed time-series data capture dynamic behavior of vegetation, and have been widely used for land cover mapping. Temporal profiles of vegetation index (VI), especially normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), are the most used features derived from time-series spectral data. Whether NDVI or EVI is optimal to generate temporal profiles has not been evaluated. The universal normalized vegetation index (UNVI), a relatively new index with all spectral bands incorporated, has been proved to be more effective than several commonly used satellite-derived VIs in some application scenarios. In this study, we explored the ability of UNVI time series for discriminating different vegetation types in Chaoyang prefecture, northeast China, in comparison with normalized NDVI, EVI, triangle vegetation index (TVI), and tasseled cap transformation greenness (TCG). These five indices were calculated using Landsat 8 surface reflectance data, and two comparative experiments were conducted. The first experiment analyzed class separabilities using pairwise JM (Jeffries–Matusita) distance as indicator, and the results showed that UNVI was superior to EVI, TVI, and TCG, and almost equivalent to NDVI, especially during the peak of vegetation growing season and for the most indistinguishable vegetation pair broadleaf and shrubs. The second experiment compared the vegetation classification accuracies using the features of these VI temporal profiles and the corresponding phenological parameters, and the results showed that UNVI can better classify the five major vegetation in Chaoyang prefecture than other four indices. Therefore, we conclude that UNVI time series has considerable potential for regional land cover mapping, and we recommend that the use of the UNVI is considered in the future time series related studies.


2020 ◽  
Vol 12 (18) ◽  
pp. 3068 ◽  
Author(s):  
Marta Prada ◽  
Carlos Cabo ◽  
Rocío Hernández-Clemente ◽  
Alberto Hornero ◽  
Juan Majada ◽  
...  

Forest management treatments often translate into changes in forest structure. Understanding and assessing how forests react to these changes is key for forest managers to develop and follow sustainable practices. A strategy to remotely monitor the development of the canopy after thinning using satellite imagery time-series data is presented. The aim was to identify optimal remote sensing Vegetation Indices (VIs) to use as time-sensitive indicators of the early response of vegetation after the thinning of sweet chestnut (Castanea Sativa Mill.) coppice. For this, the changes produced at the canopy level by different thinning treatments and their evolution over time (2014–2019) were extracted from VI values corresponding to two trials involving 33 circular plots (r = 10 m). Plots were subjected to one of the following forest management treatments: Control with no intervention (2800–3300 stems ha−1), Treatment 1, one thinning leaving a living stock density of 900–600 stems ha−1 and Treatment 2, a more intensive thinning, leaving 400 stems ha−1. Time series data from Landsat-8 and Sentinel-2 were collected to calculate values for different VIs. Canopy development was computed by comparing the area under curves (AUCs) of different VI time-series annually throughout the study period. Soil-Line VIs were compared to the Normalized Vegetation Index (NDVI) revealing that the Second Modified Chlorophyll Absorption Ratio Index (MCARI2) more clearly demonstrated canopy evolution tendencies over time than the NDVI. MCARI2 data from both L8 and S2 reflected how the influence of treatment on the canopy cover decreases over the years, providing significant differences in the thinning year and the year after. Metrics derived from the MCARI2 time-series also demonstrated the capacity of the canopy to recovery to pretreatment coverage levels. The AUC method generates a specific V-shaped time-signature, the vertex of which coincides with the thinning event and, as such, provides forest managers with another tool to assist decision making in the development of sustainable forest management strategies.


Sign in / Sign up

Export Citation Format

Share Document