scholarly journals Evaluation of the Diurnal Variation of Upper Tropospheric Humidity in Reanalysis Using Homogenized Observed Radiances from International Geostationary Weather Satellites

2020 ◽  
Vol 12 (10) ◽  
pp. 1628 ◽  
Author(s):  
Yunheng Xue ◽  
Jun Li ◽  
Zhenglong Li ◽  
Mathew M. Gunshor ◽  
Timothy J. Schmit

A near global dataset of homogenized clear-sky 6.5-μm brightness temperatures (BTs) from international geostationary (GEO) weather satellites has recently been generated and validated. In this study, these radiance measurements are used to construct the diurnal variation of upper tropospheric humidity (UTH) and to evaluate these diurnal variations simulated by five reanalysis datasets over the 45° N–45° S region. The features of the diurnal variation described by the new dataset are comparable with previous observational studies that a land–sea contrast in the diurnal variation of UTH is exhibited. Distinct diurnal variations are observed over the deep convective regions where high UTH exists. The evaluation of reanalysis datasets indicates that reanalysis systems still have considerable difficulties in capturing the observed features of the diurnal variation of UTH. All five reanalysis datasets present the largest wet biases in the afternoon when the observed UTH experiences a diurnal minimum. Reanalysis can roughly reproduce the day–night contrast of UTH but with much weaker amplitudes and later peak time over both land and ocean. Comparison of the geographical distribution of the diurnal variation shows that both ERA5 and MERRA-2 could capture the larger diurnal variations over convective regions. However, the diurnal amplitudes are widely underestimated, especially over convective land regions, while the phase biases are relatively larger over open oceans. These results suggest that some deficiencies may exist in convection and cloud parameterization schemes in reanalysis models.

2008 ◽  
Vol 21 (16) ◽  
pp. 4011-4028 ◽  
Author(s):  
Munehisa K. Yamamoto ◽  
Fumie A. Furuzawa ◽  
Atsushi Higuchi ◽  
Kenji Nakamura

Abstract Tropical Rainfall Measuring Mission (TRMM) data during June–August 1998–2003 are used to investigate diurnal variations of rain and cloud systems over the tropics and midlatitudes. The peak time of the coldest minimum brightness temperature derived from the Visible and Infrared Scanner (VIRS) and the maximum rain rate derived from the Precipitation Radar (PR) and the TRMM Microwave Imager (TMI) are compared. Time distributions are generally consistent with previous studies. However, it is found that systematic shifts in peak time relative to each sensor appeared over land, notably over western North America, the Tibetan Plateau, and oceanic regions such as the Gulf of Mexico. The peak time shift among PR, TMI, and VIRS is a few hours. The relationships among the amplitude of diurnal variation, convective frequency, storm height, and rain amount are further investigated and compared to the systematic peak time shifts. The regions where the systematic shift appears correspond to large amplitude of diurnal variation, high convective frequency, and high storm height. Over land and over ocean near the coast, the relationships are rather clear, but not over open ocean. The sensors likely detect different stages in the evolution of convective precipitation, which would explain the time shift. The PR directly detects near-surface rain. The TMI observes deep convection and solid hydrometeors, sensing heavy rain during the mature stage. VIRS detects deep convective clouds in mature and decaying stages. The shift in peak time particularly between PR (TMI) and VIRS varies by region.


2007 ◽  
Vol 7 (10) ◽  
pp. 2489-2502 ◽  
Author(s):  
E. S. Chung ◽  
B. J. Sohn ◽  
J. Schmetz ◽  
M. Koenig

Abstract. Diurnal variations of upper tropospheric humidity (UTH) as well as middle tropospheric humidity (MTH) were examined in conjunction with the diurnal cycle of convection over tropical Africa and the adjacent tropical Atlantic Ocean using Meteosat-8 measurements. Cloud and humidity features were also tracked to document the diurnal variations of humidity and clouds in the Lagrangian framework. A distinct diurnal variation of UTH (and MTH) is noted over regions where tropical deep convective cloud systems are commonly observed. The amplitude of the UTH diurnal variation is larger over land, while its variations over convectively inactive subtropical regions are much smaller. The diurnal variation of UTH tends to reach a maximum during nighttime over land, lagging deep convection and high cloud whose maxima occurred in the late afternoon and evening, respectively. It was revealed that these diurnal variations over the African continent are likely associated with continental-scale daytime solar heating and topography, in which topographically-induced signals develop earlier around the mid-afternoon and merge into stronger and broader continental-scale convection clusters later, forming a precipitation maximum in the late afternoon. It was also revealed that advection effect on the diurnal variation appears to be insignificant.


2007 ◽  
Vol 7 (1) ◽  
pp. 351-381 ◽  
Author(s):  
E. S. Chung ◽  
B. J. Sohn ◽  
J. Schmetz ◽  
M. Koenig

Abstract. Diurnal variations of upper tropospheric humidity (UTH) as well as middle tropospheric humidity (MTH) were examined in conjunction with the diurnal cycle of convection over tropical Africa and the adjacent tropical Atlantic Ocean using Meteosat-8 measurements. Cloud and humidity features were also tracked to document the diurnal variations of humidity and clouds in the Lagrangian framework. A distinct diurnal variation of UTH (and MTH) is noted over regions where tropical deep convective cloud systems are commonly observed. The amplitude of the UTH diurnal variation is larger over land, while its variations over convectively inactive subtropical regions are much smaller. The diurnal variation of UTH tends to peak during nighttime over land, lagging deep convection and high cloud whose maxima occurred in the late afternoon and the evening, respectively. The time lag between the maximum UTH and deep convection/high cloud maxima over the ocean appears to be longer in comparison to that found over land. It was also indicated that both the UTH (and MTH) and the cirrus anvil cloud show a variation which is in phase, implying that moistening of the upper troposphere is closely linked to process of development and dissipation of deep convective clouds.


1872 ◽  
Vol 7 ◽  
pp. 756-758
Author(s):  
J. A. Broun

The author gives the results derived from different discussions of nearly eighty thousand observations, made hourly during the eleven years 1854 to 1864. They are as follows:—1. That the lunar diurnal variation consists of a double maximum and minimum in each month of the year.2. That in December and January the maxima occur near the times of the moon's upper and lower passages of the meridian; while in June and July they occur six hours later, the minima then occurring near the times of the two passages.3. The change of the law for December and January to that for June and July does not happen, as in the case of the solar diurnal variations, by leaps in the course of a month (those of March and October), but more or less gradually for the different maxima and minima.


2020 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the Version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter and ice or liquid water path estimates. Dedicated retrievals for water clouds were added in V4, taking advantage of the high sensitivity of the IIR retrieval technique to small particle sizes. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results will be presented in a companion (Part II) paper. To reduce biases at very small emissivities that were made evident in V3, the radiative transfer model used to compute clear sky brightness temperatures over oceans has been updated and tuned for the simulations using MERRA-2 data to match IIR observations in clear sky conditions. Furthermore, the clear-sky mask has been refined compared to V3 by taking advantage of additional information now available in the V4 CALIOP 5-km layer products used as an input to the IIR algorithm. After sea surface emissivity adjustments, observed and computed brightness temperatures differ by less than ± 0.2 K at night for the three IIR channels centered at 08.65, 10.6, and 12.05 µm, and inter-channel biases are reduced from several tens of Kelvin in V3 to less than 0.1 K in V4. We have also aimed at improving retrievals in ice clouds having large optical depths by refining the determination of the radiative temperature needed for emissivity computation. The initial V3 estimate, namely the cloud centroid temperature derived from CALIOP, is corrected using a parameterized function of temperature difference between cloud base and top altitudes, cloud absorption optical depth, and the CALIOP multiple scattering correction factor. As shown in Part II, this improvement reduces the low biases at large optical depths that were seen in V3, and increases the number of retrievals in dense ice clouds. As in V3, the IIR microphysical retrievals use the concept of microphysical indices applied to the pairs of IIR channels at 12.05 μm and 10.6 μm and at 12.05 μm and 08.65 μm. The V4 algorithm uses ice look-up tables (LUTs) built using two ice crystal models from the recent TAMUice 2016 database, namely the single hexagonal column model and the 8-element column aggregate model, from which bulk properties are synthesized using a gamma size distribution. Four sets of effective diameters derived from a second approach are also reported in V4. Here, the LUTs are analytical functions relating microphysical index applied to IIR channels 12.05 µm and 10.6 µm and effective diameter as derived from in situ measurements at tropical and mid-latitudes during the TC4 and SPARTICUS field experiments.


2018 ◽  
Author(s):  
Sandy Hardian Susanto Herho ◽  
Dasapta Erwin Irawan

Sonic anemometer observation was performed on 29 - 30 September 2014 in Ledeng, Bandung to see diurnal variations of Turbulence Kinetic Energy (TKE) that occurred in this area. The measured sonic anemometer was the wind velocity components u, v, and w. From the observation result, it can be seen that the diurnal variation that happened was quite significant. The maximum TKE occurs during the daytime when atmospheric conditions tend to be unstable. TKE values were small at night when atmospheric conditions are more stable than during the daytime.


2020 ◽  
Vol 237 ◽  
pp. 03011
Author(s):  
Yasukuni Shibata ◽  
Chikao Nagasawa ◽  
Makoto Abo

We have conducted the measurement of high accurate CO2 mixing ratio profiles by measuring the temperature profiles simultaneously using the three wavelength CO2 DIAL. The measurements of CO2 diurnal variation in the lower atmosphere were carried out on sunny and cloudy days respectively. We find out that increasing of the CO2 mixing ratio occurs over the altitude of about 2 km from the surface during nighttime. On the other hand, the CO2 mixing ratio decreases over the lower atmosphere during daytime. In particular, the CO2 mixing ratio decreases earlier on sunny days than on cloudy days after sunrise. This result suggests that CO2 absorption by photosynthesis greatly contributes to the strength of the solar radiation.


1994 ◽  
Vol 78 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Harry S. Koelega

At least a dozen studies have investigated the effects of food intake on olfactory sensitivity. Most studies reported the existence of food-related changes in sensitivity but the findings are highly discrepant. In the present study, earlier studies are reviewed, their shortcomings discussed, and the results of an experiment are reported. Using an air-dilution olfactometer, sensitivity to the odor of acetophenone was assessed throughout the day in seven subjects on four consecutive days, both with and without lunch. In the group data no consistent pattern of changes in sensitivity related to food intake was found, although some individual subjects showed a diurnal variation. Some suggestions are made enhancing the possibility that in the future a relationship between food intake and olfactory sensitivity may be observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shanshan Wu ◽  
Haibo Zou ◽  
Junjie Wu

With the 1 h-averaged data of atmospheric precipitable water vapor (PWV) for 2015–2018 retrieved from 18 ground-based Global Positioning System (GPS) observation stations near Poyang Lake (PL), China, the diurnal variations of the PWV during midsummer (July-August) are studied by the harmonic method. Results show that significant diurnal variations of PWV are found at the 18 GPS stations. The harmonics with 24 h cycle (diurnal cycle) over PL (i.e., Duchang and Poyang) and Nanchang city only have about 50% (or even smaller than 50%) of variance contribution with the amplitude of about 0.2 mm, while above 70% (or even 80%) of variance contribution occurs elsewhere around PL, with the amplitude of about 0.9 mm. The harmonics with diurnal cycles in most stations peak from afternoon to evening (i.e., 1200-2000 LST), but one exception is Duchang site, where the diurnal cycle peaks in the morning (i.e., 1000 LST). Moreover, the harmonics with 12 h cycle (semidiurnal cycle) have the relatively uniform amplitude of about 0.2 mm, but their variance contributions show uneven distribution, with the contributions of about or above 50% in PL and Nanchang city (the semidiurnal cycles peak about 0000 LST or 1200 LST) and below 30% (or even 10%) in other areas. The preliminary diagnosis analysis shows that the diurnal variation of the low-level (below 850 hPa) air temperature (increasing after the sunrise, decreasing after the sunset, and peaking around 1400-1800 LST) may be responsible for the diurnal cycle. Moreover, in PL (Duchang and Poyang) and Nanchang city, the effects (heating or cooling) of lake and urban, the diurnal variation of the 10 m wind over PL, and the acceleration of PL on overlying air also contributed to the diurnal variation of PWV.


Author(s):  
Ninghai Sun ◽  
Quanhua Liu ◽  
Wenhui Wang ◽  
Bin Zhang ◽  
Fuzhong Weng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document