scholarly journals Detection of Insect Damage in Green Coffee Beans Using VIS-NIR Hyperspectral Imaging

2020 ◽  
Vol 12 (15) ◽  
pp. 2348
Author(s):  
Shih-Yu Chen ◽  
Chuan-Yu Chang ◽  
Cheng-Syue Ou ◽  
Chou-Tien Lien

The defective beans of coffee are categorized into black beans, fermented beans, moldy beans, insect damaged beans, parchment beans, and broken beans, and insect damaged beans are the most frequently seen type. In the past, coffee beans were manually screened and eye strain would induce misrecognition. This paper used a push-broom visible-near infrared (VIS-NIR) hyperspectral sensor to obtain the images of coffee beans, and further developed a hyperspectral insect damage detection algorithm (HIDDA), which can automatically detect insect damaged beans using only a few bands and one spectral signature. First, by taking advantage of the constrained energy minimization (CEM) developed band selection methods, constrained energy minimization-constrained band dependence minimization (CEM-BDM), minimum variance band prioritization (MinV-BP), maximal variance-based bp (MaxV-BP), sequential forward CTBS (SF-CTBS), sequential backward CTBS (SB-CTBS), and principal component analysis (PCA) were used to select the bands, and then two classifier methods were further proposed. One combined CEM with support vector machine (SVM) for classification, while the other used convolutional neural networks (CNN) and deep learning for classification where six band selection methods were then analyzed. The experiments collected 1139 beans and 20 images, and the results demonstrated that only three bands are really need to achieve 95% of accuracy and 90% of kappa coefficient. These findings show that 850–950 nm is an important wavelength range for accurately identifying insect damaged beans, and HIDDA can indeed detect insect damaged beans with only one spectral signature, which will provide an advantage in the process of practical application and commercialization in the future.

2020 ◽  
Vol 16 (8) ◽  
Author(s):  
Haoran Li ◽  
Tianhong Pan ◽  
Yuqiang Li ◽  
Shan Chen ◽  
Guoquan Li

AbstractTricholoma matsutakeis (TM) is the most expensive edible fungi in China. Given its price and exclusivity, some dishonest merchants will sell adulterated TM by combining it with cheaper fungi in an attempt to earn more profits. This fraudulent behavior has broken food laws and violated consumer trust. Therefore, there is an urgent need to develop a rapid, accurate, and nondestructive tool to discriminate TM from other edible fungi. In this work, a novel detection algorithm combined with near-infrared spectroscopy (NIR) and functional principal component analysis (FPCA) is proposed. Firstly, the raw NIR data were pretreated by locally weighted scatterplot smoothing (LOWESS) and multiplication scatter correction (MSC). Then, FPCA was used to extract valuable information from the preprocessed NIR data. Then, a classifier was designed by using the least-squares support-vector machine (LS-SVM) to distinguish categories of edible fungi. Furthermore, the one-versus-one (OVO) strategy was included and the binary LS-SVM was extended to a multi-class classifier. The 166 samples of four varieties of fungi were used to validate the proposed method. The results show that the proposed method has great capability in near infrared spectra classification, and the average accurate of FPCA-LSSVM is 97.3% which is greater than that of PCA-LSSVM (93.5%).


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.


2020 ◽  
Vol 28 (4) ◽  
pp. 224-235
Author(s):  
Irina M Benson ◽  
Beverly K Barnett ◽  
Thomas E Helser

Applications of Fourier transform near infrared (FT-NIR) spectroscopy in fisheries science are currently limited. This current analysis of otolith spectral data demonstrate the potential applicability of FT-NIR spectroscopy to otolith chemistry and spatial variability in fisheries science. The objective of this study was to examine the use of NIR spectroscopy as a tool to differentiate among marine fishes in four large marine ecosystems. We examined otoliths from 13 different species, with three of these species coming from different regions. Principal component analysis described the main directions along which the specimens were separated. The separation of species and their ecosystems may suggest interactions between fish phylogeny, ontogeny, and environmental conditions that can be evaluated using NIR spectroscopy. In order to discriminate spectra across ecosystems and species, four supervised classification model techniques were utilized: soft independent modelling of class analogies, support vector machine discriminant analysis, partial least squares discriminant analysis, and k-nearest neighbor analysis (KNN). This study showed that the best performing model to classify combined ecosystems, all four ecosystems, and species was the KNN model, which had an overall accuracy rate of 99.9%, 97.6%, and 91.5%, respectively. Results from this study suggest that further investigations are needed to determine applications of NIR spectroscopy to otolith chemistry and spatial variability.


2014 ◽  
Vol 926-930 ◽  
pp. 961-964
Author(s):  
Jiao Jiao Yin

Because the reflectivity of astaxanthin vary in different bands (mainly 400nm-600nm), so we use the visible-near infrared spectra technique to irradiate the salmon. Because in daily life, people grade the salmon flesh with a color card. In this paper, we first use principal component analysis to reduce the dimensionality of the spectral data of salmon, then use linear discriminant analysis method, least squares support vector machine classification method to distinguish the flesh quality. The correct classification rates are 60%and73.3%. The results show that we can use visible – near infrared spectra to distinguish the quality of the salmon which doesn’t be dissected.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Chao Tan ◽  
Zan Lin

Black rice is an important rice species in Southeast Asia. It is a common phenomenon to pass low-priced black rice off as high-priced ones for economic benefit, especially in some remote towns. There is increasing need for the development of fast, easy-to-use, and low-cost analytical methods for authenticity detection. The feasibility to utilize near-infrared (NIR) spectroscopy and support vector data description (SVDD) for such a goal is explored. Principal component analysis (PCA) is used for exploratory analysis and feature extraction. Another two data description methods, i.e., k-nearest neighbor data description (KNNDD) and GAUSS method, are used as the reference. A total of 142 samples from three brands were collected for spectral analysis. Each time, the samples of a brand serve as the target class whereas other samples serve as the outlier class. Based on both the first two principal components (PCs) and original variables, three types of data descriptions were constructed. On average, the optimized SVDD model achieves acceptable performance, i.e., a specificity of 100% and a sensitivity of 94.2% on the independent test set with tight boundary. It indicates that SVDD combined with NIR is feasible and effective for authenticity detection of black rice.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zhengyan Xia ◽  
Chu Zhang ◽  
Haiyong Weng ◽  
Pengcheng Nie ◽  
Yong He

Hyperspectral imaging (HSI) technology has increasingly been applied as an analytical tool in fields of agricultural, food, and Traditional Chinese Medicine over the past few years. The HSI spectrum of a sample is typically achieved by a spectroradiometer at hundreds of wavelengths. In recent years, considerable effort has been made towards identifying wavelengths (variables) that contribute useful information. Wavelengths selection is a critical step in data analysis for Raman, NIRS, or HSI spectroscopy. In this study, the performances of 10 different wavelength selection methods for the discrimination of Ophiopogon japonicus of different origin were compared. The wavelength selection algorithms tested include successive projections algorithm (SPA), loading weights (LW), regression coefficients (RC), uninformative variable elimination (UVE), UVE-SPA, competitive adaptive reweighted sampling (CARS), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), and genetic algorithms (GA-PLS). One linear technique (partial least squares-discriminant analysis) was established for the evaluation of identification. And a nonlinear calibration model, support vector machine (SVM), was also provided for comparison. The results indicate that wavelengths selection methods are tools to identify more concise and effective spectral data and play important roles in the multivariate analysis, which can be used for subsequent modeling analysis.


2014 ◽  
Vol 678 ◽  
pp. 242-251
Author(s):  
Wen Juan Yan ◽  
Guo Quan He ◽  
Shi Jian Huang ◽  
Lin Qin

Support Vector Machine (SVM) method is suitable for machine learning. In order to detect pathological information from tongue diagnosis rapidly, noninvasively and objectively, a near infrared spectral identification model is proposed based on SVM. The tongue spectral data of healthy people and hepatitis patients were collected. Twenty two samples were obtained for individual groups, and for each group, fifteen samples were randomly selected and used as the training sets, while the other seven were taken as the prediction sets. For the data sets, The effects of the principal component number, kernel parameters, and kernel functions on the identification model were investigated respectively. The results showed that the penalty parameter c was always 0.25, not related to the values of the principal component number and kernel parameter g. The kernel parameter g decreased along with the increased number of principal components, and ultimately reached a relatively stable value. When the Radial Basis Function (RBF) was applied, the established model was the best, indicating that the SVM approach is feasible to classify and recognize tongue near infrared spectroscopy, as along as right parameters are selected. This can provide a novel tongue spectral analysis method to distinguish healthy individuals from hepatitis patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yinglin Yang ◽  
Xin Zhang ◽  
Jianwei Yin ◽  
Xiangyang Yu

The classification of plastic waste before recycling is of great significance to achieve effective recycling. In order to achieve rapid, nondestructive, and on-site detection, a portable near-infrared spectrometer was used in this study to obtain the diffuse reflectance spectrum for both standard and commercial plastics made by ABS, PC, PE, PET, PP, PS, and PVC. After applying a series of pretreatments, the principal component analysis (PCA) was used to analyze the cluster trend. K-nearest neighbor (KNN), support vector machine (SVM), and back propagation neural network (BPNN) classification models were developed and evaluated, respectively. The result showed that different plastics could be well separated in top three principal components space after pretreatment, and the classification models performed excellent classification results and high generalization capability. This study indicated that the portable NIR spectrometer, integrated with chemometrics, could achieve excellent performance and has great potential in the field of commercial plastic identification.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 356 ◽  
Author(s):  
Zhu ◽  
Feng ◽  
Zhang ◽  
Bao ◽  
He

Spinach is prone to spoilage in the course of preservation. Spinach leaves stored at different temperatures for different durations will have varying degrees of freshness. In order to monitor the freshness of spinach leaves during storage, a rapid and non-destructive method—hyperspectral imaging technology—was applied in this study. Visible near-infrared reflectance (Vis-NIR) (380–1030 nm) and near-infrared reflectance (NIR) (874–1734 nm) hyperspectral imaging systems were used. Spinach leaves preserved at different temperatures with different durations (0, 3, 6, 9 days at 4 °C and 0, 1, 2 days at 20 °C) were studied. Principal component analysis (PCA) was adopted as a qualitative analysis method. The second-order derivative spectra were utilized to select effective wavelengths. Partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and extreme learning machine (ELM) were used to build models based on full spectra and effective wavelengths. All three models achieved good results, with accuracies above 92% for both Vis-NIR spectra and NIR spectra. ELM obtained the best results, with all accuracies reaching 100%. The overall results indicate the possibility of the freshness identification of spinach preserved at different temperatures for different durations using two kinds of hyperspectral imaging systems.


Sign in / Sign up

Export Citation Format

Share Document