scholarly journals Full-Reference Quality Metric Based on Neural Network to Assess the Visual Quality of Remote Sensing Images

2020 ◽  
Vol 12 (15) ◽  
pp. 2349 ◽  
Author(s):  
Oleg Ieremeiev ◽  
Vladimir Lukin ◽  
Krzysztof Okarma ◽  
Karen Egiazarian

Remote sensing images are subject to different types of degradations. The visual quality of such images is important because their visual inspection and analysis are still widely used in practice. To characterize the visual quality of remote sensing images, the use of specialized visual quality metrics is desired. Although the attempts to create such metrics are limited, there is a great number of visual quality metrics designed for other applications. Our idea is that some of these metrics can be employed in remote sensing under the condition that those metrics have been designed for the same distortion types. Thus, image databases that contain images with types of distortions that are of interest should be looked for. It has been checked what known visual quality metrics perform well for images with such degradations and an opportunity to design neural network-based combined metrics with improved performance has been studied. It is shown that for such combined metrics, their Spearman correlation coefficient with mean opinion score exceeds 0.97 for subsets of images in the Tampere Image Database (TID2013). Since different types of elementary metric pre-processing and neural network design have been considered, it has been demonstrated that it is enough to have two hidden layers and about twenty inputs. Examples of using known and designed visual quality metrics in remote sensing are presented.

2021 ◽  
Vol 13 (16) ◽  
pp. 3319
Author(s):  
Nan Ma ◽  
Lin Sun ◽  
Chenghu Zhou ◽  
Yawen He

Automatic cloud detection in remote sensing images is of great significance. Deep-learning-based methods can achieve cloud detection with high accuracy; however, network training heavily relies on a large number of labels. Manually labelling pixel-wise level cloud and non-cloud annotations for many remote sensing images is laborious and requires expert-level knowledge. Different types of satellite images cannot share a set of training data, due to the difference in spectral range and spatial resolution between them. Hence, labelled samples in each upcoming satellite image are required to train a new deep-learning-based model. In order to overcome such a limitation, a novel cloud detection algorithm based on a spectral library and convolutional neural network (CD-SLCNN) was proposed in this paper. In this method, the residual learning and one-dimensional CNN (Res-1D-CNN) was used to accurately capture the spectral information of the pixels based on the prior spectral library, effectively preventing errors due to the uncertainties in thin clouds, broken clouds, and clear-sky pixels during remote sensing interpretation. Benefiting from data simulation, the method is suitable for the cloud detection of different types of multispectral data. A total of 62 Landsat-8 Operational Land Imagers (OLI), 25 Moderate Resolution Imaging Spectroradiometers (MODIS), and 20 Sentinel-2 satellite images acquired at different times and over different types of underlying surfaces, such as a high vegetation coverage, urban area, bare soil, water, and mountains, were used for cloud detection validation and quantitative analysis, and the cloud detection results were compared with the results from the function of the mask, MODIS cloud mask, support vector machine, and random forest. The comparison revealed that the CD-SLCNN method achieved the best performance, with a higher overall accuracy (95.6%, 95.36%, 94.27%) and mean intersection over union (77.82%, 77.94%, 77.23%) on the Landsat-8 OLI, MODIS, and Sentinel-2 data, respectively. The CD-SLCNN algorithm produced consistent results with a more accurate cloud contour on thick, thin, and broken clouds over a diverse underlying surface, and had a stable performance regarding bright surfaces, such as buildings, ice, and snow.


2020 ◽  
Vol 2020 (11) ◽  
pp. 130-1-130-8
Author(s):  
Lohic Fotio Tiotsop ◽  
Tomas Mizdos ◽  
Miroslav Uhrina ◽  
Peter Pocta ◽  
Marcus Barkowsky ◽  
...  

The last decades witnessed an increasing number of works aiming at proposing objective measures for media quality assessment, i.e. determining an estimation of the mean opinion score (MOS) of human observers. In this contribution, we investigate a possibility of modeling and predicting single observer’s opinion scores rather than the MOS. More precisely, we attempt to approximate the choice of one single observer by designing a neural network (NN) that is expected to mimic that observer behavior in terms of visual quality perception. Once such NNs (one for each observer) are trained they can be looked at as “virtual observers” as they take as an input information about a sequence and they output the score that the related observer would have given after watching that sequence. This new approach allows to automatically get different opinions regarding the perceived visual quality of a sequence whose quality is under investigation and thus estimate not only the MOS but also a number of other statistical indexes such as, for instance, the standard deviation of the opinions. Large numerical experiments are performed to provide further insight into a suitability of the approach.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5684
Author(s):  
Liangliang Zheng ◽  
Wei Xu

Since remote sensing images are one of the main sources for people to obtain required information, the quality of the image becomes particularly important. Nevertheless, noise often inevitably exists in the image, and the targets are usually blurred by the acquisition of the imaging system, resulting in the degradation of quality of the images. In this paper, a novel preprocessing algorithm is proposed to simultaneously smooth noise and to enhance the edges, which can improve the visual quality of remote sensing images. It consists of an improved adaptive spatial filter, which is a weighted filter integrating functions of both noise removal and edge sharpness. Its processing parameters are flexible and adjustable relative to different images. The experimental results confirm that the proposed method outperforms the existing spatial algorithms both visually and quantitatively. It can play an important role in the remote sensing field in order to achieve more information of interested targets.


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ha Min Son ◽  
Wooho Jeon ◽  
Jinhyun Kim ◽  
Chan Yeong Heo ◽  
Hye Jin Yoon ◽  
...  

AbstractAlthough computer-aided diagnosis (CAD) is used to improve the quality of diagnosis in various medical fields such as mammography and colonography, it is not used in dermatology, where noninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies may exist. This study shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model. We classify each cluster into different common skin diseases using another neural network model. Our segmentation model achieves better performance compared to previous studies, and also achieves a near-perfect sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline model trained without segmentation, while also being able to classify multiple diseases within a single image. This improved performance may be sufficient to use CAD in the field of dermatology.


Sign in / Sign up

Export Citation Format

Share Document