Predicting Single Observer’s Votes from Objective Measures using Neural Networks

2020 ◽  
Vol 2020 (11) ◽  
pp. 130-1-130-8
Author(s):  
Lohic Fotio Tiotsop ◽  
Tomas Mizdos ◽  
Miroslav Uhrina ◽  
Peter Pocta ◽  
Marcus Barkowsky ◽  
...  

The last decades witnessed an increasing number of works aiming at proposing objective measures for media quality assessment, i.e. determining an estimation of the mean opinion score (MOS) of human observers. In this contribution, we investigate a possibility of modeling and predicting single observer’s opinion scores rather than the MOS. More precisely, we attempt to approximate the choice of one single observer by designing a neural network (NN) that is expected to mimic that observer behavior in terms of visual quality perception. Once such NNs (one for each observer) are trained they can be looked at as “virtual observers” as they take as an input information about a sequence and they output the score that the related observer would have given after watching that sequence. This new approach allows to automatically get different opinions regarding the perceived visual quality of a sequence whose quality is under investigation and thus estimate not only the MOS but also a number of other statistical indexes such as, for instance, the standard deviation of the opinions. Large numerical experiments are performed to provide further insight into a suitability of the approach.

Author(s):  
Lohic Fotio Tiotsop ◽  
Tomas Mizdos ◽  
Miroslav Uhrina ◽  
Marcus Barkowsky ◽  
Peter Pocta ◽  
...  

Abstract Subjective experiments are considered the most reliable way to assess the perceived visual quality. However, observers’ opinions are characterized by large diversity: in fact, even the same observer is often not able to exactly repeat his first opinion when rating again a given stimulus. This makes the Mean Opinion Score (MOS) alone, in many cases, not sufficient to get accurate information about the perceived visual quality. To this aim, it is important to have a measure characterizing to what extent the observed or predicted MOS value is reliable and stable. For instance, the Standard deviation of the Opinions of the Subjects (SOS) could be considered as a measure of reliability when evaluating the quality subjectively. However, we are not aware of the existence of models or algorithms that allow to objectively predict how much diversity would be observed in subjects’ opinions in terms of SOS. In this work we observe, on the basis of a statistical analysis made on several subjective experiments, that the disagreement between the quality as measured by means of different objective video quality metrics (VQMs) can provide information on the diversity of the observers’ ratings on a given processed video sequence (PVS). In light of this observation we: i) propose and validate a model for the SOS observed in a subjective experiment; ii) design and train Neural Networks (NNs) that predict the average diversity that would be observed among the subjects’ ratings for a PVS starting from a set of VQMs values computed on such a PVS; iii) give insights into how the same NN based approach can be used to identify potential anomalies in the data collected in subjective experiments.


2018 ◽  
Vol 226 ◽  
pp. 04042
Author(s):  
Marko Petkovic ◽  
Marija Blagojevic ◽  
Vladimir Mladenovic

In this paper, we introduce a new approach in food processing using an artificial intelligence. The main focus is simulation of production of spreads and chocolate as representative confectionery products. This approach aids to speed up, model, optimize, and predict the parameters of food processing trying to increase quality of final products. An artificial intelligence is used in field of neural networks and methods of decisions.


2020 ◽  
Vol 12 (15) ◽  
pp. 2349 ◽  
Author(s):  
Oleg Ieremeiev ◽  
Vladimir Lukin ◽  
Krzysztof Okarma ◽  
Karen Egiazarian

Remote sensing images are subject to different types of degradations. The visual quality of such images is important because their visual inspection and analysis are still widely used in practice. To characterize the visual quality of remote sensing images, the use of specialized visual quality metrics is desired. Although the attempts to create such metrics are limited, there is a great number of visual quality metrics designed for other applications. Our idea is that some of these metrics can be employed in remote sensing under the condition that those metrics have been designed for the same distortion types. Thus, image databases that contain images with types of distortions that are of interest should be looked for. It has been checked what known visual quality metrics perform well for images with such degradations and an opportunity to design neural network-based combined metrics with improved performance has been studied. It is shown that for such combined metrics, their Spearman correlation coefficient with mean opinion score exceeds 0.97 for subsets of images in the Tampere Image Database (TID2013). Since different types of elementary metric pre-processing and neural network design have been considered, it has been demonstrated that it is enough to have two hidden layers and about twenty inputs. Examples of using known and designed visual quality metrics in remote sensing are presented.


Informatics ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Ioannis Livieris

In this work, a new approach for training artificial neural networks is presented which utilises techniques for solving the constraint optimisation problem. More specifically, this study converts the training of a neural network into a constraint optimisation problem. Furthermore, we propose a new neural network training algorithm based on the L-BFGS-B method. Our numerical experiments illustrate the classification efficiency of the proposed algorithm and of our proposed methodology, leading to more efficient, stable and robust predictive models.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


2006 ◽  
Vol 6 ◽  
pp. 992-997 ◽  
Author(s):  
Alison M. Kerr

More than 20 years of clinical and research experience with affected people in the British Isles has provided insight into particular challenges for therapists, educators, or parents wishing to facilitate learning and to support the development of skills in people with Rett syndrome. This paper considers the challenges in two groups: those due to constraints imposed by the disabilities associated with the disorder and those stemming from the opportunities, often masked by the disorder, allowing the development of skills that depend on less-affected areas of the brain. Because the disorder interferes with the synaptic links between neurones, the functions of the brain that are most dependent on complex neural networks are the most profoundly affected. These functions include speech, memory, learning, generation of ideas, and the planning of fine movements, especially those of the hands. In contrast, spontaneous emotional and hormonal responses appear relatively intact. Whereas failure to appreciate the physical limitations of the disease leads to frustration for therapist and client alike, a clear understanding of the better-preserved areas of competence offers avenues for real progress in learning, the building of satisfying relationships, and achievement of a quality of life.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1365
Author(s):  
Bogdan Muşat ◽  
Răzvan Andonie

Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.


10.14311/1121 ◽  
2009 ◽  
Vol 49 (2) ◽  
Author(s):  
M. Chvalina

This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Liu ◽  
Peixuan Li ◽  
Xuehan Tang ◽  
Jiaxin Li ◽  
Jiaming Chen

AbstractArtificial neural networks (ANN) which include deep learning neural networks (DNN) have problems such as the local minimal problem of Back propagation neural network (BPNN), the unstable problem of Radial basis function neural network (RBFNN) and the limited maximum precision problem of Convolutional neural network (CNN). Performance (training speed, precision, etc.) of BPNN, RBFNN and CNN are expected to be improved. Main works are as follows: Firstly, based on existing BPNN and RBFNN, Wavelet neural network (WNN) is implemented in order to get better performance for further improving CNN. WNN adopts the network structure of BPNN in order to get faster training speed. WNN adopts the wavelet function as an activation function, whose form is similar to the radial basis function of RBFNN, in order to solve the local minimum problem. Secondly, WNN-based Convolutional wavelet neural network (CWNN) method is proposed, in which the fully connected layers (FCL) of CNN is replaced by WNN. Thirdly, comparative simulations based on MNIST and CIFAR-10 datasets among the discussed methods of BPNN, RBFNN, CNN and CWNN are implemented and analyzed. Fourthly, the wavelet-based Convolutional Neural Network (WCNN) is proposed, where the wavelet transformation is adopted as the activation function in Convolutional Pool Neural Network (CPNN) of CNN. Fifthly, simulations based on CWNN are implemented and analyzed on the MNIST dataset. Effects are as follows: Firstly, WNN can solve the problems of BPNN and RBFNN and have better performance. Secondly, the proposed CWNN can reduce the mean square error and the error rate of CNN, which means CWNN has better maximum precision than CNN. Thirdly, the proposed WCNN can reduce the mean square error and the error rate of CWNN, which means WCNN has better maximum precision than CWNN.


Sign in / Sign up

Export Citation Format

Share Document