scholarly journals Efficient Location and Extraction of the Iceberg Calved Areas of the Antarctic Ice Shelves

2020 ◽  
Vol 12 (16) ◽  
pp. 2658
Author(s):  
Mengzhen Qi ◽  
Yan Liu ◽  
Yijing Lin ◽  
Fengming Hui ◽  
Teng Li ◽  
...  

Continuous, rapid, and precise monitoring of calving events contributes to an in-depth understanding of calving mechanisms, which have the potential to cause significant mass loss from the Antarctic ice sheet. The difficulties in the precise monitoring of iceberg calving lie with the coexistence of ice shelf advances and calving. The manual location of iceberg calving is time-consuming and painstaking, while achieving precise extraction has mostly relied on the surface textural characteristics of the ice shelves and the quality of the images. Here, we propose a new and efficient method of separating the expansion and calving processes of ice shelves. We visualized the extension process by simulating a new coastline, based on the ice velocity, and detected the calved area using the simulated coastline and single-temporal post-calving images. We extensively tested the validity of this method by extracting four annual calving datasets (from August 2015 to August 2019) from the Sentinel-1 synthetic aperture radar mosaic of the Antarctic coastline. A total of 2032 annual Antarctic calving events were detected, with areas ranging from 0.05 km2 to 6141.0 km2, occurring on almost every Antarctic ice shelf. The extraction accuracy of the calved area depends on the positioning accuracy of the simulated coastline and the spatial resolution of the images. The positioning error of the simulated coastline is less than one pixel, and the determined minimum valid extraction area is 0.05 km2, when based on 75 m resolution images. Our method effectively avoids repetition and omission errors during the calved area extraction process. Furthermore, its efficiency is not affected by the surface textural characteristics of the calving fronts and the various changes in the frontal edge velocity, which makes it fully applicable to the rapid and accurate extraction of different calving types.

1982 ◽  
Vol 3 ◽  
pp. 103-106 ◽  
Author(s):  
James L. Fastook ◽  
William F. Schmidt

The Antarctic ice sheet has almost no net annual ablation on its surface, so most mass losses are by iceberg calving along its perimeter, which may be either grounded in shallow water or floating in deep water. An ice cliff forms along the perimeter in both cases. Wave action undercuts ice margins in the tide-water zone along beaches, and causes coastal calving if the rate of undercutting compares with the forward ice velocity. If the ice velocity is sufficiently greater, the ice sheet advances into deeper water and becomes a float at depths of 200 to 300 m (Robin 1979). A floating ice shelf then forms and icebergs calve along the ice front. Iceberg calving along this ice front may be due to several causes (Holdsworth 1977,Robin 1979). Since iceberg calving, either from ice shelves or in the tidewater zone of beaches between ice shelves, is the principal ablation mechanism of the Antarctic ice sheet, it is important to understand calving dynamics quantitatively. This paper presents the results of a finite-element examination of calving along floating margins of the ice sheet.


1982 ◽  
Vol 3 ◽  
pp. 103-106 ◽  
Author(s):  
James L. Fastook ◽  
William F. Schmidt

The Antarctic ice sheet has almost no net annual ablation on its surface, so most mass losses are by iceberg calving along its perimeter, which may be either grounded in shallow water or floating in deep water. An ice cliff forms along the perimeter in both cases. Wave action undercuts ice margins in the tide-water zone along beaches, and causes coastal calving if the rate of undercutting compares with the forward ice velocity. If the ice velocity is sufficiently greater, the ice sheet advances into deeper water and becomes a float at depths of 200 to 300 m (Robin 1979). A floating ice shelf then forms and icebergs calve along the ice front. Iceberg calving along this ice front may be due to several causes (Holdsworth 1977,Robin 1979). Since iceberg calving, either from ice shelves or in the tidewater zone of beaches between ice shelves, is the principal ablation mechanism of the Antarctic ice sheet, it is important to understand calving dynamics quantitatively. This paper presents the results of a finite-element examination of calving along floating margins of the ice sheet.


2020 ◽  
Vol 66 (258) ◽  
pp. 643-657 ◽  
Author(s):  
Cyrille Mosbeux ◽  
Till J. W. Wagner ◽  
Maya K. Becker ◽  
Helen A. Fricker

AbstractThe Antarctic Ice Sheet loses mass via its ice shelves predominantly through two processes: basal melting and iceberg calving. Iceberg calving is episodic and infrequent, and not well parameterized in ice-sheet models. Here, we investigate the impact of hydrostatic forces on calving. We develop two-dimensional elastic and viscous numerical frameworks to model the ‘footloose’ calving mechanism. This mechanism is triggered by submerged ice protrusions at the ice front, which induce unbalanced buoyancy forces that can lead to fracturing. We compare the results to identify the different roles that viscous and elastic deformations play in setting the rate and magnitude of calving events. Our results show that, although the bending stresses in both frameworks share some characteristics, their differences have important implications for modeling the calving process. In particular, the elastic model predicts that maximum stresses arise farther from the ice front than in the viscous model, leading to larger calving events. We also find that the elastic model would likely lead to more frequent events than the viscous one. Our work provides a theoretical framework for the development of a better understanding of the physical processes that govern glacier and ice-shelf calving cycles.


2021 ◽  
Author(s):  
Mengzhen Qi ◽  
Yan Liu ◽  
Xiao Cheng

<p>  Iceberg calving, one of the key processes of Antarctic mass balance, has been regarded as an important variable in fine monitoring the changes of ice shelves. Based on multi-source satellite imagery, all annual calving events larger than 1 km² that occurred from August 2005 to August 2019 were extracted. Also, their area, thickness, mass, and calving recurrence cycle were calculated to derive the annual iceberg calving dataset. This dataset contains the distribution of 14-year annual calving events, along with the attributes of each calving event including calving year, length, area, average thickness, mass, recurrence interval, and calving type, and it can directly reflect the magnitude characteristics and distribution of Antarctic iceberg calving in different years, which fills the gap of fine monitoring dataset of iceberg calving and provides fundamental data for subsequent research on calving mechanism and mass balance of Antarctic ice shelf-ice sheet system.</p>


2021 ◽  
Vol 13 (9) ◽  
pp. 4583-4601
Author(s):  
Mengzhen Qi ◽  
Yan Liu ◽  
Jiping Liu ◽  
Xiao Cheng ◽  
Yijing Lin ◽  
...  

Abstract. Iceberg calving is the main process that facilitates the dynamic mass loss of ice sheets into the ocean, which accounts for approximately half of the mass loss of the Antarctic ice sheet. Fine-scale calving variability observations can help reveal the calving mechanisms and identify the principal processes that influence how the changing climate affects global sea level through the ice shelf buttressing effect on the Antarctic ice sheet. Iceberg calving from entire ice shelves for short time intervals or from specific ice shelves for long time intervals has been monitored before, but there is still a lack of consistent, long-term, and high-precision records on independent calving events for all of the Antarctic ice shelves. In this study, a 15-year annual iceberg calving product measuring every independent calving event larger than 1 km2 over all of the Antarctic ice shelves that occurred from August 2005 to August 2020 was developed based on 16 years of continuous satellite observations. First, the expansion of the ice shelf frontal coastline was simulated according to ice velocity; following this, the calved areas, which are considered to be the differences between the simulated coastline, were manually delineated, and the actual coastline was derived from the corresponding satellite imagery, based on multisource optical and synthetic aperture radar (SAR) images. The product provides detailed information on each calving event, including the associated year of occurrence, area, size, average thickness, mass, recurrence interval, and measurement uncertainties. A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2 with an uncertainty value of 14.3 km2, and the average calving rate was measured as 770.3 Gt yr−1 with an uncertainty value of 29.5 Gt yr−1. The number of calving events, calved area, and calved mass fluctuated moderately during the first decade, followed by a dramatic increase from 2015/2016 to 2019/2020. During the dataset period, large ice shelves, such as the Ronne–Filchner and Ross ice shelves, advanced with low calving frequency, whereas small- and medium-sized ice shelves retreated and calved more frequently. Iceberg calving of ice shelves is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. The annual iceberg calving event dataset of Antarctic ice shelves provides consistent and precise calving observations with the longest time coverage. The dataset provides multidimensional variables for each independent calving event that can be used to study detailed spatial–temporal variations in Antarctic iceberg calving. The dataset can also be used to study ice sheet mass balance, calving mechanisms, and responses of iceberg calving to climate change. The dataset, entitled “Annual iceberg calving dataset of the Antarctic ice shelves (2005–2020)”, is shared via the National Tibetan Plateau Data Center: https://doi.org/10.11888/Glacio.tpdc.271250 (Qi et al., 2021). In addition, the average annual calving rate of 18.4±6.7 Gt yr−1 for calving events smaller than 1 km2 of the Antarctic ice shelves and the calving rate of 166.7±15.2 Gt yr−1 for the marine-terminating glaciers were estimated.


2018 ◽  
Author(s):  
Veronika Emetc ◽  
Paul Tregoning ◽  
Mathieu Morlighem ◽  
Chris Borstad ◽  
Malcolm Sambridge

Abstract. Antarctica and Greenland hold enough ice to raise sea level by more than 65 m if they were to melt completely. Predicting future ice sheet mass balance depends on our ability to model these ice sheets, which is limited by our current understanding of several key physical processes, such as iceberg calving. Large-scale ice flow models either ignore this process or represent it crudely. To model fracture formation, which is an important component of many calving models, Continuum Damage Mechanics as well as Linear Fracture Mechanics are commonly used. However, these methods applied across the Antarctic continent have a large number of uncertainties. Here we present an alternative, statistics-based method to model the most probable zones of nucleation of fractures. We test this approach on all main ice shelf regions in Antarctica, including the Antarctic Peninsula. We can model up to 99 % of observed fractures, with an average rate of 84 % for grounded ice and 61 % for floating ice and mean overestimation error of 26 % and 20 %, respectively, thus providing the basis for modelling calving of ice shelves. We find that Antarctic ice shelves can be classified into groups based on the factors that control fracture location. The factors that trigger fracturing as well as sustain existing fractures advected from upstream vary from one ice shelf to another.


1992 ◽  
Vol 38 (130) ◽  
pp. 375-387 ◽  
Author(s):  
S.S. Jacobs ◽  
H.H. Helmer ◽  
C. S. M. Doake ◽  
A. Jenkins ◽  
R. M. Frolich

AbstractWe calculate the present ice budget for Antarctica from measurements of accumulation minus iceberg calving, run-off and in situ melting beneath the floating ice shelves. The resulting negative mass balance of 469 Gt year−1differs substantially from other recent estimates but some components are subject to high temporal variability and budget uncertainties of 20–50%. Annual accumulation from an earlier review is adjusted to include the Antarctic Peninsula for a total of 2144 Gt year−1. An iceberg production rate of 2016 Gt year−1is obtained from the volume of large icebergs calculated from satellite images since 1978, and from the results of an international iceberg census project. Ice-shelf melting of 544 Gt year−1is derived from physical and geochemical observations of meltwater outflow, glaciological field studies and modeling of the sub-ice ocean circulation. The highest melt rates occur near ice fronts and deep within sub-ice cavities. Run-off from the ice-sheet surface and from beneath the grounded ice is taken to be 53 Gt year−1. Less than half of the negative mass balance need come from the grounded ice to account for the unattributed 0.45 mm year−1in the IPCC “best estimate” of the recent global sea-level rise.


1992 ◽  
Vol 38 (130) ◽  
pp. 375-387 ◽  
Author(s):  
S.S. Jacobs ◽  
H.H. Helmer ◽  
C. S. M. Doake ◽  
A. Jenkins ◽  
R. M. Frolich

AbstractWe calculate the present ice budget for Antarctica from measurements of accumulation minus iceberg calving, run-off and in situ melting beneath the floating ice shelves. The resulting negative mass balance of 469 Gt year−1differs substantially from other recent estimates but some components are subject to high temporal variability and budget uncertainties of 20–50%. Annual accumulation from an earlier review is adjusted to include the Antarctic Peninsula for a total of 2144 Gt year−1. An iceberg production rate of 2016 Gt year−1is obtained from the volume of large icebergs calculated from satellite images since 1978, and from the results of an international iceberg census project. Ice-shelf melting of 544 Gt year−1is derived from physical and geochemical observations of meltwater outflow, glaciological field studies and modeling of the sub-ice ocean circulation. The highest melt rates occur near ice fronts and deep within sub-ice cavities. Run-off from the ice-sheet surface and from beneath the grounded ice is taken to be 53 Gt year−1. Less than half of the negative mass balance need come from the grounded ice to account for the unattributed 0.45 mm year−1in the IPCC “best estimate” of the recent global sea-level rise.


2012 ◽  
Vol 6 (5) ◽  
pp. 1019-1030 ◽  
Author(s):  
B. Scheuchl ◽  
J. Mouginot ◽  
E. Rignot

Abstract. We report changes in ice velocity of a 6.5 million km2 region around South Pole encompassing the Filchner-Ronne and Ross Ice Shelves and a significant portion of the ice streams and glaciers that constitute their catchment areas. Using the first full interferometric synthetic aperture radar (InSAR) coverage of the region completed in 2009 and partial coverage acquired in 1997, we processed the data to assemble a comprehensive map of ice speed changes between those two years. On the Ross Ice Shelf, our results confirm a continued deceleration of Mercer and Whillans Ice Streams with a 12-yr velocity difference of −50 m yr−1 (−16.7%) and −100 m yr−1 (−25.3%) at their grounding lines. The deceleration spreads 450 km upstream of the grounding line and more than 500 km onto the shelf, beyond what was previously known. Ross and Filchner Ice Shelves exhibit signs of pre-calving events, representing the largest observed changes, with an increase in speed in excess of +100 m yr−1 in 12 yr. Other changes in the Ross Ice Shelf region are less significant. The observed changes in glacier speed extend on the Ross Ice Shelf along the ice streams' flow lines. Most tributaries of the Filchner-Ronne Ice Shelf show a modest deceleration or no change between 1997 and 2009. Slessor Glacier shows a small deceleration over a large sector. No change is detected on the Bailey, Rutford, and Institute Ice Streams. On the Filchner Ice Shelf itself, ice decelerated rather uniformly with a 12-yr difference in speed of −50 m yr−1, or −5% of its ice front speed, which we attribute to a 12 km advance in its ice front position. Our results show that dynamic changes are present in the region. They highlight the need for continued observation of the area with a primary focus on the Siple Coast. The dynamic changes in Central Antarctica between 1997 and 2009 are generally second-order effects in comparison to losses on glaciers in the Bellingshausen and Amundsen Seas region and on the Antarctic Peninsula. We therefore conclude that the dynamic changes shown here do not have a strong impact on the mass budget of the Antarctic continent.


2021 ◽  
Author(s):  
Tom Mitcham ◽  
G. Hilmar Gudmundsson ◽  
Jonathan L. Bamber

Abstract. The Antarctic Peninsula has seen rapid and widespread changes in the extent of its ice shelves in recent decades, including the collapse of the Larsen A and B ice shelves in 1995 and 2002, respectively. In 2017 the Larsen C ice shelf (LCIS) lost around 10 % of its area by calving one of the largest icebergs ever recorded (A68). This has raised questions about the structural integrity of the shelf and the impact of any changes in its extent on the flow of its tributary glaciers. In this work, we used an ice flow model to study the instantaneous impact of changes in the thickness and extent of the LCIS on ice dynamics, and in particular on changes in the grounding line flux (GLF). We initialised the model to a pre-A68 calving state, and first replicated the calving of the A68 iceberg. We found that there was a limited impact on upstream flow – with speeds increasing by less than 10 % across almost all of the shelf – and a 0.5 % increase in GLF. This result is supported by observations of ice velocity made before and after the calving event. We then perturbed the ice-shelf geometry through idealised calving and thinning experiments of increasing magnitude. We found that significant changes to the geometry of the ice shelf, through both calving and thinning, resulted in limited changes in GLF. For example, to produce a doubling of GLF from calving, the new calving front needed to be moved to 5 km from the grounding line, removing almost the entire ice shelf. For thinning, over 200 m of the ice-shelf thickness had to be removed across the whole shelf to produce a doubling of GLF. Calculating the increase in GLF (607 %) after removing the entire ice shelf allowed us to quantify the total amount of buttressing provided by the LCIS. From this, we identified that the region of the ice shelf in the first 5 km downstream of the grounding line provided over 80 % of the buttressing capacity of the shelf. This is due to the large resistive stresses generated in the narrow, local embayments downstream of the largest tributary glaciers.


Sign in / Sign up

Export Citation Format

Share Document