scholarly journals Photogrammetric 3D Model via Smartphone GNSS Sensor: Workflow, Error Estimate, and Best Practices

2020 ◽  
Vol 12 (21) ◽  
pp. 3616
Author(s):  
Stefano Tavani ◽  
Antonio Pignalosa ◽  
Amerigo Corradetti ◽  
Marco Mercuri ◽  
Luca Smeraglia ◽  
...  

Geotagged smartphone photos can be employed to build digital terrain models using structure from motion-multiview stereo (SfM-MVS) photogrammetry. Accelerometer, magnetometer, and gyroscope sensors integrated within consumer-grade smartphones can be used to record the orientation of images, which can be combined with location information provided by inbuilt global navigation satellite system (GNSS) sensors to geo-register the SfM-MVS model. The accuracy of these sensors is, however, highly variable. In this work, we use a 200 m-wide natural rocky cliff as a test case to evaluate the impact of consumer-grade smartphone GNSS sensor accuracy on the registration of SfM-MVS models. We built a high-resolution 3D model of the cliff, using an unmanned aerial vehicle (UAV) for image acquisition and ground control points (GCPs) located using a differential GNSS survey for georeferencing. This 3D model provides the benchmark against which terrestrial SfM-MVS photogrammetry models, built using smartphone images and registered using built-in accelerometer/gyroscope and GNSS sensors, are compared. Results show that satisfactory post-processing registrations of the smartphone models can be attained, requiring: (1) wide acquisition areas (scaling with GNSS error) and (2) the progressive removal of misaligned images, via an iterative process of model building and error estimation.

2019 ◽  
Vol 14 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Kalev Julge ◽  
Artu Ellmann ◽  
Romet Köök

Unmanned aerial vehicle photogrammetry is a surveying technique that enables generating point clouds, 3D surface models and orthophoto mosaics. These are based on photos captured with a camera placed on an unmanned aerial vehicle. Within the framework of this research, unmanned aerial vehicle photogrammetry surveys were carried out over a sand and gravel embankment with the aim of assessing the vertical accuracy of the derived surface models. Flight altitudes, ground control points and cameras were varied, and the impact of various factors on the results was monitored. In addition, the traditional real-time-kinematic Global Navigation Satellite System surveys were conducted for verifications. Surface models acquired by different methods were used to calculate volumes and compare the results with requirements set by Estonian Road Administration. It was found that with proper measuring techniques an accuracy of 5.7 cm for the heights were achieved.


Author(s):  
L. Teppati Losè ◽  
F. Chiabrando ◽  
F. Giulio Tonolo

Abstract. The estimate of External Orientation (E.O.) parameters for a block of images is a crucial step in the photogrammetric pipeline and the most demanding in terms of required time and human effort, both during the fieldwork and post-processing phases. Different researchers developed strategies to minimize the impact of this phase. Despite the achievement of good results, it was not possible until now to completely cancel the effect of this step. However, the efforts of the researchers in these years have also been devoted to the implementation of direct photogrammetry strategies, in order to almost completely automate the E.O. of the photogrammetric block. These new approaches were made possible also thanks to the latest developments of commercial UAVs, especially in terms of the installed GPS/GNSS (Global Positioning System/Global Navigation Satellite System) hardware. The aim of this manuscript is to evaluate the different perspectives and issues connected with the deployment of a UAV (Unmanned Aerial Vehicle) equipped with a multi-frequency GPS/GNSS receiver. Starting from the considerations mentioned above and leveraging previous works based on a fixed-wing platform, the focus of this contribution is the assessment of the real performances of an RTK multi-rotor platform addressing several questions. Is it possible to generate added-value products with centimetre 3D accuracies without measuring any ground control point? Which are the operational requirements to be taken into account in the planning phase? Are consolidated UAV mapping operational workflows already available to enable a robust direct georeferencing approach?


2020 ◽  
Vol 9 (9) ◽  
pp. 528 ◽  
Author(s):  
Serdar Erol ◽  
Emrah Özögel ◽  
Ramazan Alper Kuçak ◽  
Bihter Erol

This investigation evaluates the performance of digital terrain models (DTMs) generated in different vertical datums by aerial LiDAR and unmanned aerial vehicle (UAV) photogrammetry techniques, for the determination and validation of local geoid models. Many engineering projects require the point heights referring to a physical surface, i.e., geoid, rather than an ellipsoid. When a high-accuracy local geoid model is available in the study area, the physical heights are practically obtained with the transformation of global navigation satellite system (GNSS) ellipsoidal heights of the points. Besides the commonly used geodetic methods, this study introduces a novel approach for the determination and validation of the local geoid surface models using photogrammetry. The numeric tests were carried out in the Bergama region, in the west of Turkey. Using direct georeferenced airborne LiDAR and indirect georeferenced UAV photogrammetry-derived point clouds, DTMs were generated in ellipsoidal and geoidal vertical datums, respectively. After this, the local geoid models were calculated as differences between the generated DTMs. Generated local geoid models in the grid and pointwise formats were tested and compared with the regional gravimetric geoid model (TG03) and a high-resolution global geoid model (EIGEN6C4), respectively. In conclusion, the applied approach provided sufficient performance for modeling and validating the geoid heights with centimeter-level accuracy.


2019 ◽  
Vol 9 (18) ◽  
pp. 3867 ◽  
Author(s):  
Specht ◽  
Specht ◽  
Wąż ◽  
Dąbrowski ◽  
Skóra ◽  
...  

The purpose of this publication is to analyze the spatial and temporal variability of the territorial sea baseline in sand bottom waterbodies, which were determined twice, in 2016 and 2018, by the Real Time Kinematic (RTK) method. This involves direct measurement of sea bottom coordinates on planned hydrographic sounding profiles using a Global Navigation Satellite System (GNSS) receiver mounted on a pole. The data were the basis for creating Digital Terrain Models (DTM), which were then used to determine the baseline for both measurement campaigns. Subsequently, terrain surface models were compared to determine bathymetry changes in the area under analysis, and an assessment was made of the baseline spatial position change over the previous two years. The measurements have shown considerable spatial and temporal variability of the baseline course along a short section of sandy beach. The territorial sea baseline was very unstable; in some places, it moved by even 20–25 m, landwards and seawards. Therefore, one can suppose that these changes are periodic, and one can conclude that the reliability of the baseline measurements can decrease quite quickly.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2318 ◽  
Author(s):  
Martin Štroner ◽  
Rudolf Urban ◽  
Tomáš Reindl ◽  
Jan Seidl ◽  
Josef Brouček

Using a GNSS RTK (Global Navigation Satellite System Real Time Kinematic) -equipped unmanned aerial vehicle (UAV) could greatly simplify the construction of highly accurate digital models through SfM (Structure from Motion) photogrammetry, possibly even avoiding the need for ground control points (GCPs). As previous studies on this topic were mostly performed using fixed-wing UAVs, this study aimed to investigate the results achievable by a quadrocopter (DJI Phantom 4 RTK). Three image acquisition flights were performed for two sites of a different character (urban and rural) along with three calculation variants for each flight: georeferencing using ground-surveyed GCPs only, onboard GNSS RTK only, and a combination thereof. The combined and GNSS RTK methods provided the best results (at the expected level of accuracy of 1–2 GSD (Ground Sample Distance)) for both the vertical and horizontal components. The horizontal positioning was also accurate when georeferencing directly based on the onboard GNSS RTK; the vertical component, however, can be (especially where the terrain is difficult for SfM evaluation) burdened with relatively high systematic errors. This problem was caused by the incorrect identification of the interior orientation parameters calculated, as is customary for non-metric cameras, together with bundle adjustment. This problem could be resolved by using a small number of GCPs (at least one) or quality camera pre-calibration.


Author(s):  
S. Barba ◽  
M. Barbarella ◽  
A. Di Benedetto ◽  
M. Fiani ◽  
M. Limongiello

<p><strong>Abstract.</strong> The paper reports the results of a photogrammetric survey made using an Unmanned Aerial Vehicle (UAV) in the archaeological site of the Roman Amphitheatre in Avella (Avellino, Italy). The aim of the study is to verify which modality of image acquisition (if only nadiral images or nadiral plus Oblique images), together with the method of Global Positioning Satellite System (GNSS) survey of the Ground Control Points (GCP) is able to produce the better 3D model, in terms of accuracy, in order to extract traditional graphic drawings (plan, elevation and section), suited to the required representation scales (1<span class="thinspace"></span>:<span class="thinspace"></span>100 and 1<span class="thinspace"></span>:<span class="thinspace"></span>50). The accuracy in georeferencing was evaluated analysing the residues on the GCPs; subsequently, a more detailed analysis of the accuracy of the final 3D model was performed analysing the residuals on the image coordinates, also called re-projection error. The method developed is based on the statistical analysis of the different models, built changing the GCPs survey method and the photogrammetric shots acquired. The results of our analysis show that the photogrammetric survey is more ‘stable’ using only nadiral images and that the nRTK technique allows results comparable to those obtained with static measurements, both in precision and in reliability. Moreover, if the GCPs are measured in nRTK mode, taking into consideration the graphical error, the maximum representation scale is 1<span class="thinspace"></span>:<span class="thinspace"></span>100, whereas the use of static technique makes it possible to describe major details, at a scale of 1<span class="thinspace"></span>:<span class="thinspace"></span>50.</p>


Author(s):  
E. Tufarolo ◽  
C. Vanneschi ◽  
M. Casella ◽  
R. Salvini

<p><strong>Abstract.</strong> Open pit mines localized in high mountains are probably one of the most complex environments for Structure-From-Motion (SfM) based photogrammetry. The case study presented in this paper refers to the realization of a detailed topographic mapping in the Torano marble basin (Apuan Alps, Italy) which needed, after decades of excavation activity, a new topographic survey.</p><p>Given the requested very high resolution, the time constraints and safety-related problems, a photogrammetric approach by a fixedwing Unmanned Aerial Vehicle (UAV) was chosen to carry out thesurvey of the basin. In addition, given the morphological complexity of the area, characterized by extreme steep slopes more than hundreds of meters high, and the necessity to minimize the fieldwork without sacrificing the work quality, an UAV equipped with a L1/L2 Network Real Time Kinematic (NRTK) Global Navigation Satellite System (GNSS) was used.</p><p>The scope of this work is to compare the accuracy of UAV derived 3D photogrammetric models realized with different approaches: by using traditional Ground Control Points (GCPs), by using the on-board Network Real Time Kinematic system for camera position detection, and a mix of both. At the end, we tested the quality of the models to verify the reachable levels of accuracy.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 3185
Author(s):  
Ehsan Khoramshahi ◽  
Raquel A. Oliveira ◽  
Niko Koivumäki ◽  
Eija Honkavaara

Simultaneous localization and mapping (SLAM) of a monocular projective camera installed on an unmanned aerial vehicle (UAV) is a challenging task in photogrammetry, computer vision, and robotics. This paper presents a novel real-time monocular SLAM solution for UAV applications. It is based on two steps: consecutive construction of the UAV path, and adjacent strip connection. Consecutive construction rapidly estimates the UAV path by sequentially connecting incoming images to a network of connected images. A multilevel pyramid matching is proposed for this step that contains a sub-window matching using high-resolution images. The sub-window matching increases the frequency of tie points by propagating locations of matched sub-windows that leads to a list of high-frequency tie points while keeping the execution time relatively low. A sparse bundle block adjustment (BBA) is employed to optimize the initial path by considering nuisance parameters. System calibration parameters with respect to global navigation satellite system (GNSS) and inertial navigation system (INS) are optionally considered in the BBA model for direct georeferencing. Ground control points and checkpoints are optionally included in the model for georeferencing and quality control. Adjacent strip connection is enabled by an overlap analysis to further improve connectivity of local networks. A novel angular parametrization based on spherical rotation coordinate system is presented to address the gimbal lock singularity of BBA. Our results suggest that the proposed scheme is a precise real-time monocular SLAM solution for a UAV.


2021 ◽  
pp. 1-13
Author(s):  
Jonghyuk Kim ◽  
Jose Guivant ◽  
Martin L. Sollie ◽  
Torleiv H. Bryne ◽  
Tor Arne Johansen

Abstract This paper addresses the fusion of the pseudorange/pseudorange rate observations from the global navigation satellite system and the inertial–visual simultaneous localisation and mapping (SLAM) to achieve reliable navigation of unmanned aerial vehicles. This work extends the previous work on a simulation-based study [Kim et al. (2017). Compressed fusion of GNSS and inertial navigation with simultaneous localisation and mapping. IEEE Aerospace and Electronic Systems Magazine, 32(8), 22–36] to a real-flight dataset collected from a fixed-wing unmanned aerial vehicle platform. The dataset consists of measurements from visual landmarks, an inertial measurement unit, and pseudorange and pseudorange rates. We propose a novel all-source navigation filter, termed a compressed pseudo-SLAM, which can seamlessly integrate all available information in a computationally efficient way. In this framework, a local map is dynamically defined around the vehicle, updating the vehicle and local landmark states within the region. A global map includes the rest of the landmarks and is updated at a much lower rate by accumulating (or compressing) the local-to-global correlation information within the filter. It will show that the horizontal navigation error is effectively constrained with one satellite vehicle and one landmark observation. The computational cost will be analysed, demonstrating the efficiency of the method.


2021 ◽  
Vol 13 (15) ◽  
pp. 3014
Author(s):  
Feng Wang ◽  
Dongkai Yang ◽  
Guodong Zhang ◽  
Jin Xing ◽  
Bo Zhang ◽  
...  

Sea surface height can be measured with the delay between reflected and direct global navigation satellite system (GNSS) signals. The arrival time of a feature point, such as the waveform peak, the peak of the derivative waveform, and the fraction of the peak waveform is not the true arrival time of the specular signal; there is a bias between them. This paper aims to analyze and calibrate the bias to improve the accuracy of sea surface height measured by using the reflected signals of GPS CA, Galileo E1b and BeiDou B1I. First, the influencing factors of the delay bias, including the elevation angle, receiver height, wind speed, pseudorandom noise (PRN) code of GPS CA, Galileo E1b and BeiDou B1I, and the down-looking antenna pattern are explored based on the Z-V model. The results show that (1) with increasing elevation angle, receiver height, and wind speed, the delay bias tends to decrease; (2) the impact of the PRN code is uncoupled from the elevation angle, receiver height, and wind speed, so the delay biases of Galileo E1b and BeiDou B1I can be derived from that of GPS CA by multiplication by the constants 0.32 and 0.54, respectively; and (3) the influence of the down-looking antenna pattern on the delay bias is lower than 1 m, which is less than that of other factors; hence, the effect of the down-looking antenna pattern is ignored in this paper. Second, an analytical model and a neural network are proposed based on the assumption that the influence of all factors on the delay bias are uncoupled and coupled, respectively, to calibrate the delay bias. The results of the simulation and experiment show that compared to the meter-level bias before the calibration, the calibrated bias decreases the decimeter level. Based on the fact that the specular points of several satellites are visible to the down-looking antenna, the multi-observation method is proposed to calibrate the bias for the case of unknown wind speed, and the same calibration results can be obtained when the proper combination of satellites is selected.


Sign in / Sign up

Export Citation Format

Share Document