scholarly journals The Met Office Operational Soil Moisture Analysis System

2020 ◽  
Vol 12 (22) ◽  
pp. 3691
Author(s):  
Breogán Gómez ◽  
Cristina L. Charlton-Pérez ◽  
Huw Lewis ◽  
Brett Candy

In this study, the current Met Office operational land surface data assimilation system used to produce soil moisture analyses is presented. The main aim of including Land Surface Data Assimilation (LSDA) in both the global and regional systems is to improve forecasts of surface air temperature and humidity. Results from trials assimilating pseudo-observations of 1.5 m air temperature and specific humidity and satellite-derived soil wetness (ASCAT) observations are analysed. The pre-processing of all the observations is described, including the definition and construction of the pseudo-observations. The benefits of using both observations together to produce improved forecasts of surface air temperature and humidity are outlined both in the winter and summer seasons. The benefits of using active LSDA are quantified by the root mean squared error, which is computed using both surface observations and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses as truth. For the global model trials, results are presented separately for the Northern (NH) and Southern (SH) hemispheres. When compared against ground-truth, LSDA in winter NH appears neutral, but in the SH it is the assimilation of ASCAT that contributes to approximately a 2% improvement in temperatures at lead times beyond 48 h. In NH summer, the ASCAT soil wetness observations degrade the forecasts against observations by about 1%, but including the screen level pseudo-observations provides a compensating benefit. In contrast, in the SH, the positive effect comes from including the ASCAT soil wetness observations, and when both observations types are assimilated there is a compensating effect. Finally, we demonstrate substantial improvements to hydrological prediction when using land surface data assimilation in the regional model. Using the Nash-Sutcliffe Efficiency (NSE) metric as an aggregated measure of river flow simulation skill relative to observations, we find that NSE was improved at 106 of 143 UK river gauge locations considered after LSDA was introduced. The number of gauge comparisons where NSE exceeded 0.5 is also increased from 17 to 28 with LSDA.

2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2011 ◽  
Vol 139 (2) ◽  
pp. 494-510 ◽  
Author(s):  
Yang Yang ◽  
Michael Uddstrom ◽  
Mike Revell ◽  
Phil Andrews ◽  
Hilary Oliver ◽  
...  

Abstract Historically most soil moisture–land surface impact studies have focused on continents because of the important forecasting and climate implications involved. For a relatively small isolated mountainous landmass in the ocean such as New Zealand, these impacts have received less attention. This paper addresses some of these issues for New Zealand through numerical experiments with a regional configuration of the Met Office Unified Model atmospheric model. Two pairs of idealized simulations with only contrasting dry or wet initial soil moisture over a 6-day period in January 2004 were conducted, with one pair using realistic terrain and the other pair flat terrain. For the mean of the 6 days, the differences in the simulated surface air temperature between the dry and moist cases were 3–5 K on the leeside slopes and 1–2 K on the windward slopes and the central leeside coastal region of the South Island in the afternoon. This quite nonuniform response in surface air temperature to a uniformly distributed soil moisture content and soil type is mainly attributed to modification of the effects of soil moisture by mountains through two different processes: 1) spatial variation in cloud coverage across the mountains ranges leading to more shortwave radiation at ground surface on the leeside slope than the windward slope, and 2) the presence of a dynamically and thermally induced onshore flow on the leeside coast bringing in air with a lower sensitivity to soil moisture. The response of local winds to soil moisture content is through direct or indirect effects. The direct effect is due to the thermal contrast between land and sea/land shown for the leeside solenoidal circulations, and the indirect effect is through the weakening of the upstream blocking of the South Island for dryer soils shown by the weakening and onshore shift of the upstream deceleration and forced ascent of incoming airflow.


2019 ◽  
Vol 11 (3) ◽  
pp. 335 ◽  
Author(s):  
Kishore Pangaluru ◽  
Isabella Velicogna ◽  
Geruo A ◽  
Yara Mohajerani ◽  
Enrico Ciracì ◽  
...  

This study investigates the spatial and temporal variability of the soil moisture in India using Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) gridded datasets from June 2002 to April 2017. Significant relationships between soil moisture and different land surface–atmosphere fields (Precipitation, surface air temperature, total cloud cover, and total water storage) were studied, using maximum covariance analysis (MCA) to extract dominant interactions that maximize the covariance between two fields. The first leading mode of MCA explained 56%, 87%, 81%, and 79% of the squared covariance function (SCF) between soil moisture with precipitation (PR), surface air temperature (TEM), total cloud count (TCC), and total water storage (TWS), respectively, with correlation coefficients of 0.65, −0.72, 0.71, and 0.62. Furthermore, the covariance analysis of total water storage showed contrasting patterns with soil moisture, especially over northwest, northeast, and west coast regions. In addition, the spatial distribution of seasonal and annual trends of soil moisture in India was estimated using a robust regression technique for the very first time. For most regions in India, significant positive trends were noticed in all seasons. Meanwhile, a small negative trend was observed over southern India. The monthly mean value of AMSR soil moisture trend revealed a significant positive trend, at about 0.0158 cm3/cm3 per decade during the period ranging from 2002 to 2017.


2017 ◽  
Vol 145 (12) ◽  
pp. 4997-5014 ◽  
Author(s):  
Liao-Fan Lin ◽  
Ardeshir M. Ebtehaj ◽  
Alejandro N. Flores ◽  
Satish Bastola ◽  
Rafael L. Bras

This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).


2020 ◽  
Vol 21 (9) ◽  
pp. 2101-2121 ◽  
Author(s):  
Chul-Su Shin ◽  
Paul A. Dirmeyer ◽  
Bohua Huang ◽  
Subhadeep Halder ◽  
Arun Kumar

AbstractThe NCEP CFSv2 ensemble reforecasts initialized with different land surface analyses for the period of 1979–2010 have been conducted to assess the effect of uncertainty in land initial states on surface air temperature prediction. The two observation-based land initial states are adapted from the NCEP CFS Reanalysis (CFSR) and the NASA GLDAS-2 analysis; atmosphere, ocean, and ice initial states are identical for both reforecasts. This identical-twin experiment confirms that the prediction skill of surface air temperature is sensitive to the uncertainty of land initial states, especially in soil moisture and snow cover. There is no distinct characteristic that determines which set of the reforecasts performs better. Rather, the better performer varies with the lead week and location for each season. Estimates of soil moisture between the two land initial states are significantly different with an apparent north–south contrast for almost all seasons, causing predicted surface air temperature discrepancies between the two sets of reforecasts, particularly in regions where the magnitude of initial soil moisture difference lies in the top quintile. In boreal spring, inconsistency of snow cover between the two land initial states also plays a critical role in enhancing the discrepancy of predicted surface air temperature from week 5 to week 8. Our results suggest that a reduction of the uncertainty in land surface properties among the current land surface analyses will be beneficial to improving the prediction skill of surface air temperature on subseasonal time scales. Implications of a multiple land surface analysis ensemble are also discussed.


2006 ◽  
Vol 7 (3) ◽  
pp. 494-510 ◽  
Author(s):  
Dennis McLaughlin ◽  
Yuhua Zhou ◽  
Dara Entekhabi ◽  
Virat Chatdarong

Abstract Land surface data assimilation problems are often limited by the high dimensionality of states created by spatial discretization over large high-resolution computational grids. Yet field observations and simulation both confirm that soil moisture can have pronounced spatial structure, especially after extensive rainfall. This suggests that the high dimensionality of the problem could be reduced during wet periods if spatial patterns could be more efficiently represented. After prolonged drydown, when spatial structure is determined primarily by small-scale soil and vegetation variability rather than rainfall, the original high-dimensional problem can be effectively replaced by many independent low-dimensional problems that can be solved in parallel with relatively little effort. In reality, conditions are continually varying between these two extremes. This is confirmed by a singular value decomposition of the replicate matrix (covariance square root) produced in an ensemble forecasting simulation experiment. The singular value spectrum drops off quickly after rainfall events, when a few leading modes dominate the spatial structure of soil moisture. The spectrum is much flatter after a prolonged drydown period, when spatial structure is less significant. Deterministic reduced-rank Kalman filters can achieve significant computational efficiency by focusing on the leading modes of a system with large-scale spatial structure. But these methods are not well suited for land surface problems with complex uncertain inputs and rapidly changing spectra. Local ensemble Kalman filters are suitable for such problems during dry periods but give less accurate results after rainfall. The most promising option for achieving computational efficiency and accuracy is to develop generalized localization methods that dynamically aggregate states, reflecting structural changes in the ensemble.


2009 ◽  
Vol 48 (7) ◽  
pp. 1362-1376 ◽  
Author(s):  
Jonathan E. Pleim ◽  
Robert Gilliam

Abstract The Pleim–Xiu land surface model (PX LSM) has been improved by the addition of a second indirect data assimilation scheme. The first, which was described previously, is a technique in which soil moisture is nudged according to the biases in 2-m air temperature and relative humidity between the model- and observation-based analyses. The new technique involves nudging the deep soil temperature in the soil temperature force–restore (FR) model according to model bias in 2-m air temperature only during nighttime. While the FR technique is computationally efficient and very accurate for the special conditions for which it was derived, it is very dependent on the deep soil temperature that drives the restoration term of the surface soil temperature equation. Thus, adjustment of the deep soil temperature to optimize the 2-m air temperature during the night, when surface forcing is minimal, provides significant advantages over other methods of deep soil moisture initialization. Simulations of the Weather Research and Forecasting Model (WRF) using the PX LSM with and without the new deep soil temperature nudging scheme demonstrate substantial benefits of the new scheme for reducing error and bias of the 2-m air temperature. The effects of the new nudging scheme are most pronounced in the winter (January 2006) during which the model’s cold bias is greatly reduced. Air temperature error and bias are also reduced in a summer simulation (August 2006) with the greatest benefits in less vegetated and more arid regions. Thus, the deep temperature nudging scheme complements the soil moisture nudging scheme because it is most effective for conditions in which the soil moisture scheme is least effective, that is, when evapotranspiration is not important (winter and arid climates).


Sign in / Sign up

Export Citation Format

Share Document