scholarly journals UAV Laser Scans Allow Detection of Morphological Changes in Tree Canopy

2020 ◽  
Vol 12 (22) ◽  
pp. 3829
Author(s):  
Martin Slavík ◽  
Karel Kuželka ◽  
Roman Modlinger ◽  
Ivana Tomášková ◽  
Peter Surový

High-resolution laser scans from unmanned aerial vehicles (UAV) provide a highly detailed description of tree structure at the level of fine branches. Apart from ultrahigh spatial resolution, unmanned aerial laser scanning (ULS) can also provide high temporal resolution due to its operability and flexibility during data acquisition. We examined the phenomenon of bending branches of dead trees during one year from ULS multi-temporal data. In a multi-temporal series of three ULS datasets, we detected a synchronized reversible change in the inclination angles of the branches of 43 dead trees in a stand of blue spruce (Picea pungens Engelm.). The observed phenomenon has important consequences for both tree physiology and forest remote sensing (RS). First, the inclination angle of branches plays a crucial role in solar radiation interception and thus influences the total photosynthetic gain. The ability of a tree to change the branch position has important ecophysiological consequences, including better competitiveness across the site. Branch shifting in dead trees could be regarded as evidence of functional mycorrhizal interconnections via roots between live and dead trees. Second, we show that the detected movement results in a significant change in several point cloud metrics often utilized for deriving forest inventory parameters, both in the area-based approach (ABA) and individual tree detection approaches, which can affect the prediction of forest variables. To help quantify its impact, we used point cloud metrics of automatically segmented individual trees to build a generalized linear model to classify trees with and without the observed morphological changes. The model was applied to a validation set and correctly identified 86% of trees that displayed branch movement, as recorded by a human observer. The ULS allows for the study of this phenomenon across large areas, not only at individual tree levels.

2018 ◽  
Vol 10 (12) ◽  
pp. 1972 ◽  
Author(s):  
Katarzyna Zielewska-Büttner ◽  
Marco Heurich ◽  
Jörg Müller ◽  
Veronika Braunisch

Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management.


2015 ◽  
Vol 12 (5) ◽  
pp. 1629-1634 ◽  
Author(s):  
T. Hakala ◽  
O. Nevalainen ◽  
S. Kaasalainen ◽  
R. Mäkipää

Abstract. We present an empirical application of multispectral laser scanning for monitoring the seasonal and spatial changes in pine chlorophyll (a + b) content and upscaling the accurate leaf-level chlorophyll measurements into branch and tree level. The results show the capability of the new instrument for monitoring the changes in the shape and physiology of tree canopy: the spectral indices retrieved from the multispectral point cloud agree with laboratory measurements of the chlorophyll a and b content. The approach opens new prospects for replacing destructive and labour-intensive manual sampling with remote observations of tree physiology.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


2020 ◽  
Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>


Author(s):  
Qianwei Liu ◽  
Weifeng Ma ◽  
Jianpeng Zhang ◽  
Yicheng Liu ◽  
Dongfan Xu ◽  
...  

AbstractForest resource management and ecological assessment have been recently supported by emerging technologies. Terrestrial laser scanning (TLS) is one that can be quickly and accurately used to obtain three-dimensional forest information, and create good representations of forest vertical structure. TLS data can be exploited for highly significant tasks, particularly the segmentation and information extraction for individual trees. However, the existing single-tree segmentation methods suffer from low segmentation accuracy and poor robustness, and hence do not lead to satisfactory results for natural forests in complex environments. In this paper, we propose a trunk-growth (TG) method for single-tree point-cloud segmentation, and apply this method to the natural forest scenes of Shangri-La City in Northwest Yunnan, China. First, the point normal vector and its Z-axis component are used as trunk-growth constraints. Then, the points surrounding the trunk are searched to account for regrowth. Finally, the nearest distributed branch and leaf points are used to complete the individual tree segmentation. The results show that the TG method can effectively segment individual trees with an average F-score of 0.96. The proposed method applies to many types of trees with various growth shapes, and can effectively identify shrubs and herbs in complex scenes of natural forests. The promising outcomes of the TG method demonstrate the key advantages of combining plant morphology theory and LiDAR technology for advancing and optimizing forestry systems.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 415 ◽  
Author(s):  
Mohammad Imangholiloo ◽  
Ninni Saarinen ◽  
Lauri Markelin ◽  
Tomi Rosnell ◽  
Roope Näsi ◽  
...  

Seedling stands are mainly inventoried through field measurements, which are typically laborious, expensive and time-consuming due to high tree density and small tree size. In addition, operationally used sparse density airborne laser scanning (ALS) and aerial imagery data are not sufficiently accurate for inventorying seedling stands. The use of unmanned aerial vehicles (UAVs) for forestry applications is currently in high attention and in the midst of quick development and this technology could be used to make seedling stand management more efficient. This study was designed to investigate the use of UAV-based photogrammetric point clouds and hyperspectral imagery for characterizing seedling stands in leaf-off and leaf-on conditions. The focus was in retrieving tree density and the height in young seedling stands in the southern boreal forests of Finland. After creating the canopy height model from photogrammetric point clouds using national digital terrain model based on ALS, the watershed segmentation method was applied to delineate the tree canopy boundary at individual tree level. The segments were then used to extract tree heights and spectral information. Optimal bands for calculating vegetation indices were analysed and used for species classification using the random forest method. Tree density and the mean tree height of the total and spruce trees were then estimated at the plot level. The overall tree density was underestimated by 17.5% and 20.2% in leaf-off and leaf-on conditions with the relative root mean square error (relative RMSE) of 33.5% and 26.8%, respectively. Mean tree height was underestimated by 20.8% and 7.4% (relative RMSE of 23.0% and 11.5%, and RMSE of 0.57 m and 0.29 m) in leaf-off and leaf-on conditions, respectively. The leaf-on data outperformed the leaf-off data in the estimations. The results showed that UAV imagery hold potential for reliably characterizing seedling stands and to be used to supplement or replace the laborious field inventory methods.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 660 ◽  
Author(s):  
Yangbo Deng ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Qiaoya Xie ◽  
Yita Hsieh ◽  
...  

The accurate estimation of leaf area is of great importance for the acquisition of information on the forest canopy structure. Currently, direct harvesting is used to obtain leaf area; however, it is difficult to quickly and effectively extract the leaf area of a forest. Although remote sensing technology can obtain leaf area by using a wide range of leaf area estimates, such technology cannot accurately estimate leaf area at small spatial scales. The purpose of this study is to examine the use of terrestrial laser scanning data to achieve a fast, accurate, and non-destructive estimation of individual tree leaf area. We use terrestrial laser scanning data to obtain 3D point cloud data for individual tree canopies of Pinus massoniana. Using voxel conversion, we develop a model for the number of voxels and canopy leaf area and then apply it to the 3D data. The results show significant positive correlations between reference leaf area and mass (R2 = 0.8603; p < 0.01). Our findings demonstrate that using terrestrial laser point cloud data with a layer thickness of 0.1 m and voxel size of 0.05 m can effectively improve leaf area estimations. We verify the suitability of the voxel-based method for estimating the leaf area of P. massoniana and confirmed the effectiveness of this non-destructive method.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 339
Author(s):  
Scott Heffernan ◽  
Bogdan M Strimbu

Surface Canopy Water (SCW) is the intercepted rain water that resides within the tree canopy and plays a significant role in the hydrological cycle. Challenges arise in measuring SCW in remote areas using traditional ground-based techniques. Remote sensing in the radio spectrum has the potential to overcome the challenges where traditional modelling approaches face difficulties. In this study, we aim at estimating the SCW by fusing information extracted from the radar imagery acquired with the Sentinel-1 constellation, aerial laser scanning, and meteorological data. To describe the change of radar backscatter with moisture, we focused on six forest stands in the H.J. Andrews experimental forest in central Oregon, as well as four clear cut areas and one golf course, over the summers of 2015–2017. We found significant relationships when we executed the analysis on radar images in which individual tree crowns were delineated from lidar, as opposed to SCW estimated from individual pixel backscatter. Significant differences occur in the mean backscatter between radar images taken during rain vs. dry periods (no rain for >1 h), but these effects only last for roughly 30 min after the end of a rain event. We developed a predictive model for SCW using the radar images acquired at dawn, and proved the capability of space-based radar systems to provide information for estimation of the canopy moisture under conditions of fresh rainfall during the dry season.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2804
Author(s):  
Harold F. Murcia ◽  
Sebastian Tilaguy ◽  
Sofiane Ouazaa

Growing evaluation in the early stages of crop development can be critical to eventual yield. Point clouds have been used for this purpose in tasks such as detection, characterization, phenotyping, and prediction on different crops with terrestrial mapping platforms based on laser scanning. 3D model generation requires the use of specialized measurement equipment, which limits access to this technology because of their complex and high cost, both hardware elements and data processing software. An unmanned 3D reconstruction mapping system of orchards or small crops has been developed to support the determination of morphological indices, allowing the individual calculation of the height and radius of the canopy of the trees to monitor plant growth. This paper presents the details on each development stage of a low-cost mapping system which integrates an Unmanned Ground Vehicle UGV and a 2D LiDAR to generate 3D point clouds. The sensing system for the data collection was developed from the design in mechanical, electronic, control, and software layers. The validation test was carried out on a citrus crop section by a comparison of distance and canopy height values obtained from our generated point cloud concerning the reference values obtained with a photogrammetry method. A 3D crop map was generated to provide a graphical view of the density of tree canopies in different sections which led to the determination of individual plant characteristics using a Python-assisted tool. Field evaluation results showed plant individual tree height and crown diameter with a root mean square error of around 30.8 and 45.7 cm between point cloud data and reference values.


2020 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Yuanshuo Hao ◽  
Faris Rafi Almay Widagdo ◽  
Xin Liu ◽  
Ying Quan ◽  
Lihu Dong ◽  
...  

Unmanned aerial vehicle laser scanning (UAVLS) systems present a relatively new means of remote sensing and are increasingly applied in the field of forest ecology and management. However, one of the most essential parameters in forest inventory, tree diameter at breast height (DBH), cannot be directly extracted from aerial point cloud data due to the limitations of scanning angle and canopy obstruction. Therefore, in this study DBH-UAVLS point cloud estimation models were established using a generalized nonlinear mixed-effects (NLME) model. The experiments were conducted using Larix olgensis as the subject species, and a total of 8364 correctly delineated trees from UAVLS data within 118 plots across 11 sites were used for DBH modeling. Both tree- and plot-level metrics were obtained using light detection and ranging (LiDAR) and were used as the models’ independent predictors. The results indicated that the addition of site-level random effects significantly improved the model fitting. Compared with nonparametric modeling approaches (random forest and k-nearest neighbors) and uni- or multivariable weighted nonlinear least square regression through leave-one-site-out cross-validation, the NLME model with local calibration achieved the lowest root mean square error (RMSE) values (1.94 cm) and the most stable prediction across different sites. Using the site in a random-effects model improved the transferability of LiDAR-based DBH estimation. The best linear unbiased predictor (BLUP), used to conduct local model calibration, led to an improvement in the models’ performance as the number of field measurements increased. The research provides a baseline for unmanned aerial vehicle (UAV) small-scale forest inventories and might be a reasonable alternative for operational forestry.


Sign in / Sign up

Export Citation Format

Share Document