scholarly journals Point Cloud Inversion: A Novel Approach for the Localization of Trees in Forests from TLS Data

2021 ◽  
Vol 13 (3) ◽  
pp. 338
Author(s):  
Shaobo Xia ◽  
Dong Chen ◽  
Jiju Peethambaran ◽  
Pu Wang ◽  
Sheng Xu

Tree localization in point clouds of forest scenes is critical in the forest inventory. Most of the existing methods proposed for TLS forest data are based on model fitting or point-wise features which are time-consuming, sensitive to data incompleteness and complex tree structures. Furthermore, these methods often require lots of preprocessing such as ground filtering and noise removal. The fast and easy-to-use top-based methods that are widely applied in processing ALS point clouds are not applicable in localizing trees in TLS point clouds due to the data incompleteness and complex canopy structures. The objective of this study is to make the top-based methods applicable to TLS forest point clouds. To this end, a novel point cloud transformation is presented, which enhances the visual salience of tree instances and makes the top-based methods adapting to TLS forest scenes. The input for the proposed method is the raw point clouds and no other pre-processing steps are needed. The new method is tested on an international benchmark and the experimental results demonstrate its necessity and effectiveness. Finally, the proposed method has the potential to benefit other object localization tasks in different scenes based on detailed analysis and tests.

2020 ◽  
Vol 6 (9) ◽  
pp. 94
Author(s):  
Magda Alexandra Trujillo-Jiménez ◽  
Pablo Navarro ◽  
Bruno Pazos ◽  
Leonardo Morales ◽  
Virginia Ramallo ◽  
...  

Current point cloud extraction methods based on photogrammetry generate large amounts of spurious detections that hamper useful 3D mesh reconstructions or, even worse, the possibility of adequate measurements. Moreover, noise removal methods for point clouds are complex, slow and incapable to cope with semantic noise. In this work, we present body2vec, a model-based body segmentation tool that uses a specifically trained Neural Network architecture. Body2vec is capable to perform human body point cloud reconstruction from videos taken on hand-held devices (smartphones or tablets), achieving high quality anthropometric measurements. The main contribution of the proposed workflow is to perform a background removal step, thus avoiding the spurious points generation that is usual in photogrammetric reconstruction. A group of 60 persons were taped with a smartphone, and the corresponding point clouds were obtained automatically with standard photogrammetric methods. We used as a 3D silver standard the clean meshes obtained at the same time with LiDAR sensors post-processed and noise-filtered by expert anthropological biologists. Finally, we used as gold standard anthropometric measurements of the waist and hip of the same people, taken by expert anthropometrists. Applying our method to the raw videos significantly enhanced the quality of the results of the point cloud as compared with the LiDAR-based mesh, and of the anthropometric measurements as compared with the actual hip and waist perimeter measured by the anthropometrists. In both contexts, the resulting quality of body2vec is equivalent to the LiDAR reconstruction.


2020 ◽  
Vol 34 (07) ◽  
pp. 11596-11603 ◽  
Author(s):  
Minghua Liu ◽  
Lu Sheng ◽  
Sheng Yang ◽  
Jing Shao ◽  
Shi-Min Hu

3D point cloud completion, the task of inferring the complete geometric shape from a partial point cloud, has been attracting attention in the community. For acquiring high-fidelity dense point clouds and avoiding uneven distribution, blurred details, or structural loss of existing methods' results, we propose a novel approach to complete the partial point cloud in two stages. Specifically, in the first stage, the approach predicts a complete but coarse-grained point cloud with a collection of parametric surface elements. Then, in the second stage, it merges the coarse-grained prediction with the input point cloud by a novel sampling algorithm. Our method utilizes a joint loss function to guide the distribution of the points. Extensive experiments verify the effectiveness of our method and demonstrate that it outperforms the existing methods in both the Earth Mover's Distance (EMD) and the Chamfer Distance (CD).


2020 ◽  
Vol 10 (21) ◽  
pp. 7652
Author(s):  
Ľudovít Kovanič ◽  
Peter Blistan ◽  
Rudolf Urban ◽  
Martin Štroner ◽  
Katarína Pukanská ◽  
...  

This research focused on determining a rotary kiln’s geometric parameters in a non-traditional geodetic way—by deriving them from a survey realized by a terrestrial laser scanner (TLS). The point cloud obtained by TLS measurement was processed to derive the longitudinal axis of the RK. Subsequently, the carrier tires’ geometric parameters and shell of the RK during the shutdown were derived. Manual point cloud selection (segmentation) is the base method for removing unnecessary points. This method is slow but precise and controllable. The proposed analytical solution is based on calculating the distance from each point to the RK’s nominal axis (local radius). Iteration using a histogram function was repeatedly applied to detect points with the same or similar radiuses. The most numerous intervals of points were selected and stored in separate files. In the comparison, we present the conformity of analytically and manually obtained files and derived geometric values of the RK-radiuses’ spatial parameters and coordinates of the carrier tires’ centers. The horizontal (X and Y directions) and vertical (Z-direction) of root–mean–square deviation (RMSD) values are up to 2 mm. RMSD of the fitting of cylinders is also up to 2 mm. The center of the carrier tires defines the longitudinal axis of the RK. Analytical segmentation of the points was repeated on the remaining point cloud for the selection of the points on the outer shell of the RK. Deformation analysis of the shell of the RK was performed using a cylinder with a nominal radius. Manually and analytically processed point clouds were investigated and mutually compared. The calculated RMSD value is up to 2 mm. Parallel cuts situated perpendicularly to the axis of the RK were created. Analysis of ovality (flattening) of the shell was performed. Additionally, we also present the effect of gradually decreasing density (number) of points on the carrier tires for their center derivation.


Author(s):  
Hoang Long Nguyen ◽  
David Belton ◽  
Petra Helmholz

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.


2021 ◽  
Vol 13 (16) ◽  
pp. 3058
Author(s):  
Rui Gao ◽  
Jisun Park ◽  
Xiaohang Hu ◽  
Seungjun Yang ◽  
Kyungeun Cho

Signals, such as point clouds captured by light detection and ranging sensors, are often affected by highly reflective objects, including specular opaque and transparent materials, such as glass, mirrors, and polished metal, which produce reflection artifacts, thereby degrading the performance of associated computer vision techniques. In traditional noise filtering methods for point clouds, noise is detected by considering the distribution of the neighboring points. However, noise generated by reflected areas is quite dense and cannot be removed by considering the point distribution. Therefore, this paper proposes a noise removal method to detect dense noise points caused by reflected objects using multi-position sensing data comparison. The proposed method is divided into three steps. First, the point cloud data are converted to range images of depth and reflective intensity. Second, the reflected area is detected using a sliding window on two converted range images. Finally, noise is filtered by comparing it with the neighbor sensor data between the detected reflected areas. Experiment results demonstrate that, unlike conventional methods, the proposed method can better filter dense and large-scale noise caused by reflective objects. In future work, we will attempt to add the RGB image to improve the accuracy of noise detection.


2018 ◽  
Author(s):  
Peter L Guth

National mapping agencies in North American and western Europe have released free lidar point clouds with densities of 2-23 points/m², and derived terrain grids. Geomorphometric processing uses a bare earth digital terrain model (DTM), which can be acquired from mapping agencies or created from the point cloud to better control its characteristics. Free software provides tools for noise removal, ground classification, surface generation, void filling, surface smoothing, and hydraulic conditioning. Tests with three ground classification algorithms, and four surface generation algorithms show that they produced very similar results. The main issues for geomorphometric operations on DTMs involve whether the highest and lowest ground points should be in the DTM if they are not on a grid node, how water, buildings, and roads should be treated, if using a DTM of lower resolution will effectively filter out noise and allow much faster processing, and if lower resolution DTMs should be created directly from the point cloud or by processing a higher resolution DTM.


Author(s):  
Sara Greenberg ◽  
John McPhee ◽  
Alexander Wong

Fitting a kinematic model of the human body to an image withoutthe use of markers is a method of pose estimation that is usefulfor tracking and posture evaluation. This model-fitting is challengingdue to the variation in human physique and the large numberof possible poses. One type of modeling is to represent the humanbody as a set of rigid body volumes. These volumes can beregistered to a target point cloud acquired from a depth camerausing the Iterative Closest Point (ICP) algorithm. The speed of ICPregistration is inversely proportional to the number of points in themodel and the target point clouds, and using the entire target pointcloud in this registration is too slow for real-time applications. Thiswork proposes the use of data-driven Monte Carlo methods to selecta subset of points from the target point cloud that maintains orimproves the accuracy of the point cloud registration for joint localizationin real time. For this application, we investigate curvature ofthe depth image as the driving variable to guide the sampling, andcompare it with benchmark random sampling techniques.


2021 ◽  
Vol 11 (20) ◽  
pp. 9775
Author(s):  
Lei Sun ◽  
Zhongliang Deng

Rotation search and point cloud registration are two fundamental problems in robotics, geometric vision, and remote sensing, which aim to estimate the rotation and transformation between the 3D vector sets and point clouds, respectively. Due to the presence of outliers (probably in very large numbers) among the putative vector or point correspondences in real-world applications, robust estimation is of great importance. In this paper, we present Inlier searching using COmpatible Structures (ICOS), a novel, efficient, and highly robust solver for both the correspondence-based rotation search and point cloud registration problems. Specifically, we (i) propose and construct a series of compatible structures for the two problems, based on which various invariants can be established, and (ii) design time-efficient frameworks to filter out outliers and seek inliers from the invariant-constrained random sampling based on the compatible structures proposed. In this manner, even with extreme outlier ratios, inliers can be effectively sifted out and collected for solving the optimal rotation and transformation, leading to our robust solver ICOS. Through plentiful experiments over standard datasets, we demonstrated that: (i) our solver ICOS is fast, accurate, and robust against over 95% outliers with nearly a 100% recall ratio of inliers for rotation search and both known-scale and unknown-scale registration, outperforming other state-of-the-art methods, and (ii) ICOS is practical for use in real-world application problems including 2D image stitching and 3D object localization.


CERNE ◽  
2012 ◽  
Vol 18 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Luciano Teixeira de Oliveira ◽  
Luis Marcelo Tavares de Carvalho ◽  
Maria Zélia Ferreira ◽  
Thomaz Chaves de Andrade Oliveira ◽  
Fausto Weimar Acerbi Junior

Light Detection and Ranging, or LIDAR, has become an effective ancillary tool to extract forest inventory data and for use in other forest studies. This work was aimed at establishing an effective methodology for using LIDAR for tree count in a stand of Eucalyptus sp. located in southern Bahia state. Information provided includes in-flight gross data processing to final tree count. Intermediate processing steps are of critical importance to the quality of results and include the following stages: organizing point clouds, creating a canopy surface model (CSM) through TIN and IDW interpolation and final automated tree count with a local maximum algorithm with 5 x 5 and 3 x 3 windows. Results were checked against manual tree count using Quickbird images, for verification of accuracy. Tree count using IDW interpolation with a 5x5 window for the count algorithm was found to be accurate to 97.36%. This result demonstrates the effectiveness of the methodology and its use potential for future applications.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-24
Author(s):  
Piotr Tompalski ◽  
Nicholas C. Coops ◽  
Joanne C. White ◽  
Tristan R.H. Goodbody ◽  
Chris R. Hennigar ◽  
...  

Abstract Purpose of Review The increasing availability of three-dimensional point clouds, including both airborne laser scanning and digital aerial photogrammetry, allow for the derivation of forest inventory information with a high level of attribute accuracy and spatial detail. When available at two points in time, point cloud datasets offer a rich source of information for detailed analysis of change in forest structure. Recent Findings Existing research across a broad range of forest types has demonstrated that those analyses can be performed using different approaches, levels of detail, or source data. By reviewing the relevant findings, we highlight the potential that bi- and multi-temporal point clouds have for enhanced analysis of forest growth. We divide the existing approaches into two broad categories— – approaches that focus on estimating change based on predictions of two or more forest inventory attributes over time, and approaches for forecasting forest inventory attributes. We describe how point clouds acquired at two or more points in time can be used for both categories of analysis by comparing input airborne datasets, before discussing the methods that were used, and resulting accuracies. Summary To conclude, we outline outstanding research gaps that require further investigation, including the need for an improved understanding of which three-dimensional datasets can be applied using certain methods. We also discuss the likely implications of these datasets on the expected outcomes, improvements in tree-to-tree matching and analysis, integration with growth simulators, and ultimately, the development of growth models driven entirely with point cloud data.


Sign in / Sign up

Export Citation Format

Share Document