scholarly journals Spatio-Temporal Changes and Driving Forces of Vegetation Coverage on the Loess Plateau of Northern Shaanxi

2021 ◽  
Vol 13 (4) ◽  
pp. 613
Author(s):  
Tong Nie ◽  
Guotao Dong ◽  
Xiaohui Jiang ◽  
Yuxin Lei

As an important indicator of terrestrial ecosystems, vegetation plays an important role in the study of global or regional ecological environmental changes. Northern Shaanxi is located in the ecologically fragile area of the Loess Plateau, which is affected by interactions between natural and human factors. Here, we used the Normalized Difference Vegetation Index (NDVI) as an indicator to study the temporal and spatial variations of vegetation in Northern Shaanxi from 2000 to 2018. Based on the geographic detector method which can detect spatial differentiation, we analyzed the spatial differentiation characteristics and driving forces of vegetation in Northern Shaanxi, and revealed the most appropriate range or type of influencing factors for promoting vegetation growth. The results showed that the overall vegetation coverage improved in the study area, and NDVI showed an increasing trend with a growth rate of 0.10/10 years from 2000 to 2018. Natural and human factors are crucial driving forces of NDVI change, among which gross domestic product, land-use type, slope, and temperature have the greatest influence. The interaction between natural and human factors on NDVI was dominated by nonlinear and mutual enhancement effects, and the influence of interactions among all factors was significantly higher than that of a single factor. The range or types of factors suitable for vegetation growth were analyzed in the study area, and the joint action of natural and human factors had a more significant impact on vegetation. These findings provide a scientific basis for local governments to intervene in vegetation changes and ecological restoration through natural and human factors within the favorable scope.

2021 ◽  
Vol 13 (12) ◽  
pp. 2358
Author(s):  
Linjing Qiu ◽  
Yiping Wu ◽  
Zhaoyang Shi ◽  
Yuting Chen ◽  
Fubo Zhao

Quantitatively identifying the influences of vegetation restoration (VR) on water resources is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau (LP) of China since the implementation of VR policy, the way vegetation dynamics influences regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset. The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR and climate change to ET are identified by combining climate scenarios and VR scenarios. The results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which results in a weak variation in TET at an annual scale and an increased TET is only shown in summer. Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These findings imply that climate change might play a dominant role in ET variability on the LP, and this work emphasizes the importance of comprehensively considering the interactions among climate factors to assess the relative contributions of VR and climate change to ET.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


2021 ◽  
Vol 13 (5) ◽  
pp. 923
Author(s):  
Qianqian Sun ◽  
Chao Liu ◽  
Tianyang Chen ◽  
Anbing Zhang

Vegetation fluctuation is sensitive to climate change, and this response exhibits a time lag. Traditionally, scholars estimated this lag effect by considering the immediate prior lag (e.g., where vegetation in the current month is impacted by the climate in a certain prior month) or the lag accumulation (e.g., where vegetation in the current month is impacted by the last several months). The essence of these two methods is that vegetation growth is impacted by climate conditions in the prior period or several consecutive previous periods, which fails to consider the different impacts coming from each of those prior periods. Therefore, this study proposed a new approach, the weighted time-lag method, in detecting the lag effect of climate conditions coming from different prior periods. Essentially, the new method is a generalized extension of the lag-accumulation method. However, the new method detects how many prior periods need to be considered and, most importantly, the differentiated climate impact on vegetation growth in each of the determined prior periods. We tested the performance of the new method in the Loess Plateau by comparing various lag detection methods by using the linear model between the climate factors and the normalized difference vegetation index (NDVI). The case study confirmed four main findings: (1) the response of vegetation growth exhibits time lag to both precipitation and temperature; (2) there are apparent differences in the time lag effect detected by various methods, but the weighted time-lag method produced the highest determination coefficient (R2) in the linear model and provided the most specific lag pattern over the determined prior periods; (3) the vegetation growth is most sensitive to climate factors in the current month and the last month in the Loess Plateau but reflects a varied of responses to other prior months; and (4) the impact of temperature on vegetation growth is higher than that of precipitation. The new method provides a much more precise detection of the lag effect of climate change on vegetation growth and makes a smart decision about soil conservation and ecological restoration after severe climate events, such as long-lasting drought or flooding.


CATENA ◽  
2000 ◽  
Vol 39 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Bojie Fu ◽  
Liding Chen ◽  
Keming Ma ◽  
Huafeng Zhou ◽  
Jun Wang

Author(s):  
Yang Li ◽  
Yaochen Qin ◽  
Liqun Ma ◽  
Ziwu Pan

Purpose The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau. Design/methodology/approach The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described. Findings The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November. Originality/value This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.


Sign in / Sign up

Export Citation Format

Share Document