scholarly journals Impact of Lightning Data Assimilation on the Short-Term Precipitation Forecast over the Central Mediterranean Sea

2021 ◽  
Vol 13 (4) ◽  
pp. 682
Author(s):  
Rosa Claudia Torcasio ◽  
Stefano Federico ◽  
Albert Comellas Prat ◽  
Giulia Panegrossi ◽  
Leo Pio D'Adderio ◽  
...  

Lightning data assimilation (LDA) is a powerful tool to improve the weather forecast of convective events and has been widely applied with this purpose in the past two decades. Most of these applications refer to events hitting coastal and land areas, where people live. However, a weather forecast over the sea has many important practical applications, and this paper focuses on the impact of LDA on the precipitation forecast over the central Mediterranean Sea around Italy. The 3 h rapid update cycle (RUC) configuration of the weather research and forecasting (WRF) model) has been used to simulate the whole month of November 2019. Two sets of forecasts have been considered: CTRL, without lightning data assimilation, and LIGHT, which assimilates data from the LIghtning detection NETwork (LINET). The 3 h precipitation forecast has been compared with observations of the Integrated Multi-satellitE Retrievals for Global Precipitation Mission (GPM) (IMERG) dataset and with rain gauge observations recorded in six small Italian islands. The comparison of CTRL and LIGHT precipitation forecasts with the IMERG dataset shows a positive impact of LDA. The correlation between predicted and observed precipitation improves over wide areas of the Ionian and Adriatic Seas when LDA is applied. Specifically, the correlation coefficient for the whole domain increases from 0.59 to 0.67, and the anomaly correlation (AC) improves by 5% over land and by 8% over the sea when lightning is assimilated. The impact of LDA on the 3 h precipitation forecast over six small islands is also positive. LDA improves the forecast by both decreasing the false alarms and increasing the hits of the precipitation forecast, although with variability among the islands. The case study of 12 November 2019 (time interval 00–03 UTC) has been used to show how important the impact of LDA can be in practice. In particular, the shifting of the main precipitation pattern from land to the sea caused by LDA gives a much better representation of the precipitation field observed by the IMERG precipitation product.

Author(s):  
Roberto Carlucci ◽  
Francesca Capezzuto ◽  
Giulia Cipriano ◽  
Gianfranco D’Onghia ◽  
Carmelo Fanizza ◽  
...  

AbstractThe exploitation of fishery resources acts as a driving force on cetaceans both directly, by determining their fishing mortality or injury as by-catch species, and indirectly, through the lowering the availability of their prey. This competitive overlap between fishing and cetaceans often results in inadequate solutions so that in some cases there have been cases of intentional cetacean culling to maximize fishing production. A modelling approach applied to investigate the ecological roles of cetaceans in the food web could prove more effective to integrate ecological and fishing aspects and to provide suggestions for management. The comparative analysis carried out in the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea) showed that fishing exploitation provides impacts on the investigated food web greater than those due to cetacean predation. Trawling was estimated to be the most negatively impacting fishing gear considering the mortality rates and consumption flows. On the other hand, the striped dolphin was the main impact on the food web due to its highest consumption flows. Analysis showed a negative and non-selective impact on the exploited species due to the fishing gears, while the odontocetes proved to select their prey species and provide a positive impact in the assemblage. In particular, while the fishing gears are primarily size selective, targeting mostly large and economically valuable fish, the odontocetes seem to follow a co-evolution process with their prey, developing a specialization in their resources, providing control of the meso-consumers and ensuring a trophic stability in the ecosystem.


2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2020 ◽  
Vol 152 ◽  
pp. 110928 ◽  
Author(s):  
Pierpaolo Consoli ◽  
Mauro Sinopoli ◽  
Alan Deidun ◽  
Simonepietro Canese ◽  
Claudio Berti ◽  
...  

2017 ◽  
Vol 13 (10) ◽  
pp. 1084-1094 ◽  
Author(s):  
Pierpaolo Consoli ◽  
Valentina Esposito ◽  
Manuela Falautano ◽  
Pietro Battaglia ◽  
Luca Castriota ◽  
...  

2019 ◽  
Vol 35 (1-2) ◽  
pp. 213-231 ◽  
Author(s):  
D. D. Insinga ◽  
P. Petrosino ◽  
I. Alberico ◽  
G. J. Lange ◽  
C. Lubritto ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Tuanjie Hou ◽  
Fanyou Kong ◽  
Xunlai Chen ◽  
Hengchi Lei

This study examines the impact of three-dimensional variational data assimilation (3DVAR) on the prediction of two heavy rainfall events over Southern China by using a real-time storm-scale forecasting system. Initialized from the European Centre for Medium-Range Weather Forecasts (ECMWF) high-resolution data, the forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) 3DVAR package. Observations from Doppler radars, surface Automatic Weather Station (AWS) network, and radiosondes are used in the experiments to evaluate the impact of data assimilation on short-term quantitative precipitation forecast (QPF) skill. Results suggest that extrasurface AWS data assimilation has slight but general positive impact on rainfall location forecasts. Surface AWS data also improve model results of near-surface variables. Radiosonde data assimilation improves the QPF skill by improving rainfall position accuracy and reducing rainfall overprediction. Compared with radar data, the overall impact of additional surface and radiosonde data is smaller and is reflected primarily in reducing rainfall overestimation. The assimilation of all radar, surface, and radiosonde data has a more positive impact on the forecast skill than the assimilation of either type of data only for the two rainfall events.


2007 ◽  
Vol 135 (6) ◽  
pp. 2355-2364 ◽  
Author(s):  
Stéphane Laroche ◽  
Pierre Gauthier ◽  
Monique Tanguay ◽  
Simon Pellerin ◽  
Josée Morneau

Abstract A four-dimensional variational data assimilation (4DVAR) scheme has recently been implemented in the medium-range weather forecast system of the Meteorological Service of Canada (MSC). The new scheme is now composed of several additional and improved features as compared with the three-dimensional variational data assimilation (3DVAR): the first guess at the appropriate time from the full-resolution model trajectory is used to calculate the misfit to the observations; the tangent linear of the forecast model and its adjoint are employed to propagate the analysis increment and the gradient of the cost function over the 6-h assimilation window; a comprehensive set of simplified physical parameterizations is used during the final minimization process; and the number of frequently reported data, in particular satellite data, has substantially increased. The impact of these 4DVAR components on the forecast skill is reported in this article. This is achieved by comparing data assimilation configurations that range in complexity from the former 3DVAR with the implemented 4DVAR over a 1-month period. It is shown that the implementation of the tangent-linear model and its adjoint as well as the increased number of observations are the two features of the new 4DVAR that contribute the most to the forecast improvement. All the other components provide marginal though positive impact. 4DVAR does not improve the medium-range forecast of tropical storms in general and tends to amplify the existing, too early extratropical transition often observed in the MSC global forecast system with 3DVAR. It is shown that this recurrent problem is, however, more sensitive to the forecast model than the data assimilation scheme employed in this system. Finally, the impact of using a shorter cutoff time for the reception of observations, as the one used in the operational context for the 0000 and 1200 UTC forecasts, is more detrimental with 4DVAR. This result indicates that 4DVAR is more sensitive to observations at the end of the assimilation window than 3DVAR.


2020 ◽  
Vol 12 (3) ◽  
pp. 383 ◽  
Author(s):  
Christos Giannaros ◽  
Vassiliki Kotroni ◽  
Konstantinos Lagouvardos ◽  
Theodore M. Giannaros ◽  
Christos Pikridas

The derivation of global navigation satellite systems (GNSSs) tropospheric products is nowadays a state-of-the-art technique that serves both research and operational needs in a broad range of applications in meteorology. In particular, GNSS zenith tropospheric delay (ZTD) data assimilation is widely applied in Europe to enhance numerical weather predictions (NWPs). The current study presents the first attempt at introducing assimilation of ZTDs, derived from more than 48 stations of the Hellenic GNSS network, into the operational NWP system of the National Observatory of Athens (NOA) in Greece, which is based on the mesoscale Weather Research and Forecasting (WRF) model. WRF was applied during seven high-impact precipitation events covering the dry and wet season of 2018. The simulation employing the ZTD data assimilation reproduces more accurately, compared to the control experiment, the observed heavy rainfall (especially for high precipitation events, exceeding 20 mm in 24h) during both dry and wet periods. Assimilating ZTDs also improves the simulation of intense (>20 mm) convective precipitation during the time window of its occurrence in the dry season, and provides a beneficial influence during synoptic-scale events in the wet period. The above results, which are statistically significant, highlight an important positive impact of ZTD assimilation on the model’s precipitation forecast skill over Greece. Overall, the modelling system’s configuration, including the assimilation of ZTD observations, satisfactorily captures the spatial and temporal distribution of the observed rainfall and can therefore be used as the basis for examining further improvements in the future.


2018 ◽  
Vol 25 (4) ◽  
pp. 747-764 ◽  
Author(s):  
Thomas Gastaldo ◽  
Virginia Poli ◽  
Chiara Marsigli ◽  
Pier Paolo Alberoni ◽  
Tiziana Paccagnella

Abstract. Quantitative precipitation forecast (QPF) is still a challenge for numerical weather prediction (NWP), despite the continuous improvement of models and data assimilation systems. In this regard, the assimilation of radar reflectivity volumes should be beneficial, since the accuracy of analysis is the element that most affects short-term QPFs. Up to now, few attempts have been made to assimilate these observations in an operational set-up, due to the large amount of computational resources needed and due to several open issues, like the rise of imbalances in the analyses and the estimation of the observational error. In this work, we evaluate the impact of the assimilation of radar reflectivity volumes employing a local ensemble transform Kalman filter (LETKF), implemented for the convection-permitting model of the COnsortium for Small-scale MOdelling (COSMO). A 4-day test case on February 2017 is considered and the verification of QPFs is performed using the fractions skill score (FSS) and the SAL technique, an object-based method which allows one to decompose the error in precipitation fields in terms of structure (S), amplitude (A) and location (L). Results obtained assimilating both conventional data and radar reflectivity volumes are compared to those of the operational system of the Hydro-Meteo-Climate Service of the Emilia-Romagna Region (Arpae-SIMC), in which only conventional observations are employed and latent heat nudging (LHN) is applied using surface rainfall intensity (SRI) estimated from the Italian radar network data. The impact of assimilating reflectivity volumes using LETKF in combination or not with LHN is assessed. Furthermore, some sensitivity tests are performed to evaluate the effects of the length of the assimilation window and of the reflectivity observational error (roe). Moreover, balance issues are assessed in terms of kinetic energy spectra and providing some examples of how these affect prognostic fields. Results show that the assimilation of reflectivity volumes has a positive impact on QPF accuracy in the first few hours of forecast, both when it is combined with LHN or not. The improvement is further slightly enhanced when only observations collected close to the analysis time are assimilated, while the shortening of cycle length worsens QPF accuracy. Finally, the employment of too small a value of roe introduces imbalances into the analyses, resulting in a severe degradation of forecast accuracy, especially when very short assimilation cycles are used.


2020 ◽  
Vol 12 (8) ◽  
pp. 1243 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski ◽  
Timothy J. Lang

The National Aeronautics and Space Administration (NASA) Cyclone Global Navigation Satellite System (CYGNSS) mission was launched in December 2016. CYGNSS provides ocean surface wind speed retrieval along specular reflection tracks at an interval resolution of approximately 25 km. With a median revisit time of 2.8 h covering a ±35° latitude, CYGNSS can provide more frequent and accurate measurements of surface wind over the tropical oceans under heavy precipitation, especially within tropical cyclone cores and deep convection regions, than traditional scatterometers. In this study, CYGNSS v2.1 Level 2 wind speed data were assimilated into the Weather Research and Forecasting (WRF) model using the WRF Data Assimilation (WRFDA) system with hybrid 3- and 4-dimensional variational ensemble technology. Case studies were conducted to examine the impact of the CYGNSS data on forecasts of tropical cyclone (TC) Irving and a westerly wind burst (WWB) during the Madden–Julian oscillation (MJO) event over the Indian Ocean in early January 2018. The results indicate a positive impact of the CYGNSS data on the wind field. However, the impact from the CYGNSS data decreases rapidly within 4 h after data assimilation. Also, the influence of CYGNSS data only on precipitation forecast is found to be limited. The assimilation of CYGNSS data was further explored with an additional experiment in which CYGNSS data was combined with Global Precipitation Mission (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) hourly precipitation and Advanced Scatterometer (ASCAT) wind vector and were assimilated into the WRF model. A significant positive impact was found on the tropical cyclone intensity and track forecasts. The short-term forecast of wind and precipitation fields were also improved for both TC Irving and the WWB event when the combined satellite data was assimilated.


Sign in / Sign up

Export Citation Format

Share Document