scholarly journals Spring Phenological Sensitivity to Climate Change in the Northern Hemisphere: Comprehensive Evaluation and Driving Force Analysis

2021 ◽  
Vol 13 (10) ◽  
pp. 1972
Author(s):  
Kaiwei Li ◽  
Chunyi Wang ◽  
Qing Sun ◽  
Guangzhi Rong ◽  
Zhijun Tong ◽  
...  

Plant phenology depends largely on temperature, but temperature alone cannot explain the Northern Hemisphere shifts in the start of the growing season (SOS). The spatio–temporal distribution of SOS sensitivity to climate variability has also changed in recent years. We applied the partial least squares regression (PLSR) method to construct a standardized SOS sensitivity evaluation index and analyzed the combined effects of air temperature (Tem), water balance (Wbi), radiation (Srad), and previous year’s phenology on SOS. The spatial and temporal distributions of SOS sensitivity to Northern Hemisphere climate change from 1982 to 2014 were analyzed using time windows of 33 and 15 years; the dominant biological and environmental drivers were also assessed. The results showed that the combined sensitivity of SOS to climate change (SCom) is most influenced by preseason temperature sensitivity. However, because of the asymmetric response of SOS to daytime/night temperature (Tmax/Tmin) and non-negligible moderating of Wbi and Srad on SOS, SCom was more effective in expressing the effect of climate change on SOS than any single climatic factor. Vegetation cover (or type) was the dominant factor influencing the spatial pattern of SOS sensitivity, followed by spring temperature (Tmin > Tmax), and the weakest was water balance. Forests had the highest SCom absolute values. A significant decrease in the sensitivity of some vegetation (22.2%) led to a decreasing trend in sensitivity in the Northern Hemisphere. Although temperature remains the main climatic factor driving temporal changes in SCom, the temperature effects were asymmetric between spring and winter (Tems/Temw). More moisture might mitigate the asymmetric response of SCom to spring/winter warming. Vegetation adaptation has a greater influence on the temporal variability of SOS sensitivity relative to each climatic factor (Tems, Temw, Wbi, Srad). More moisture might mitigate the asymmetric response of SCom to spring/winter warming. This study provides a basis for vegetation phenology sensitivity assessment and prediction.

Author(s):  
Oksana Sadkovskaya

One of major factors of deterioration in a microclimate of urban development in the conditions of the Rostov region, is degradation of landscapes owing to violation of water balance of the territory. In article the main reasons for violation of water balance which included natural features of the region, a consequence of anthropogenic influence, climatic changes, etc. are considered. Examples from the world practice of urban planning, which show the relevance and effectiveness of compensation for the effects of anthropogenic im-pacts and climate change using planning methods, are given. The experience of the United States, the Nether-lands, Canada and other countries that use water-saving technologies in planning is considered. The rela-tionship of urban planning and the formation of sustainable urban landscapes is shown. The integration of water-saving technologies into the urban environment can be a means of optimizing landscapes and a means of creating unique urban spaces. Reclamation of the urban landscape of low-rise buildings is a necessary step in creating a modern and comfortable urban environment in the conditions of the Rostov region. Meth-ods are proposed to compensate for negative changes in urban landscapes that can be applied at the stage of urban planning. As well as the proposed methods can be applied in the reconstruction of urban low-rise buildings. The considered methods concern not only urban landscapes, but also agricultural landscapes that surround small and medium-sized cities of the Rostov region. In article the author's concept of the organiza-tion of the low housing estate on a basis Urban- facies is submitted. Planning methods of regulation of water balance of the territory on the basis of models the ecological protective of landscapes are offered: an ecolog-ical core, an ecological corridor and an ecological barrier and also analogs from town-planning practice are considered. The reclamation of urban landscapes based on urban planning methods for regulating the water balance of the territory will allow creating unique urban spaces that are resistant to local climatic conditions and the possible consequences of climate change.


2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xu Lian ◽  
Shilong Piao ◽  
Anping Chen ◽  
Kai Wang ◽  
Xiangyi Li ◽  
...  

AbstractThe state of ecosystems is influenced strongly by their past, and describing this carryover effect is important to accurately forecast their future behaviors. However, the strength and persistence of this carryover effect on ecosystem dynamics in comparison to that of simultaneous environmental drivers are still poorly understood. Here, we show that vegetation growth carryover (VGC), defined as the effect of present states of vegetation on subsequent growth, exerts strong positive impacts on seasonal vegetation growth over the Northern Hemisphere. In particular, this VGC of early growing-season vegetation growth is even stronger than past and co-occurring climate on determining peak-to-late season vegetation growth, and is the primary contributor to the recently observed annual greening trend. The effect of seasonal VGC persists into the subsequent year but not further. Current process-based ecosystem models greatly underestimate the VGC effect, and may therefore underestimate the CO2 sequestration potential of northern vegetation under future warming.


2020 ◽  
Author(s):  
Yuanhui Yu ◽  
Yuyan Zhou ◽  
Weihua Xiao ◽  
Benqing Ruan ◽  
Fan Lu ◽  
...  

Abstract It is important to understand how actual evapotranspiration (ETa) changes and what the dominant contributing factors are. This study investigated the impacts of climatic factor and vegetation coverage on the variations of ETa using a Budyko-based framework. Climatic seasonal index and vegetation coverage index were selected as indicating factors. Two reservoir watersheds, i.e. the Wangkuai Reservoir Watershed and the Xidayang Reservoir Watershed, of the Daqing River Basin were selected as case studies. Also, relationships between the ETa and climatic and vegetation factors were analyzed. Results showed that the improved vegetation conditions positively contributed to the ETa changes, leading to an increase of 42.15 and 58.56 mm of ETa in the two watersheds, while the increasing climate seasonality had a negative effect, resulting in a drop of 11.48 and 13.47 mm of ETa. Vegetation coverage was recognized as the dominant factor to the changes of ETa, compared to the climatic factor. Our research could offer supporting information for water resources management, agricultural production improvement and eco-environment construction in arid regions.


2002 ◽  
Vol 56 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Sylvi Haldorsen ◽  
Michael Heim ◽  
Bernard Lefauconnier ◽  
Lars-Evan Pettersson ◽  
Morten Røros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document