scholarly journals Sequential Ambiguity Resolution Method for Poorly-Observed GNSS Data

2021 ◽  
Vol 13 (11) ◽  
pp. 2106
Author(s):  
Haiyang Li ◽  
Guigen Nie ◽  
Shuguang Wu ◽  
Yuefan He

Integer ambiguity resolution is required to obtain precise coordinates for the global navigation satellite system (GNSS). Poorly observed data cause unfixed integer ambiguity and reduce the coordinate accuracy. Previous studies mostly used denoise filters and partial ambiguity resolution algorithms to address this problem. This study proposes a sequential ambiguity resolution method that includes a float solution substitution process and a double-difference (DD) iterative correction equation process. The float solution substitution process updates the initial float solution, while the DD iterative correction equation process is used to eliminate the residual biases. The satellite-selection experiment shows that the float solution substitution process is adequate to obtain a more accurate float solution. The iteration-correction experiment shows that the double-difference iterative correction equation process is feasible with an improvement in the ambiguity success rate from 28.4% to 96.2%. The superiority experiment shows significant improvement in the ambiguity success rate from 36.1% to 83.6% and a better baseline difference from about 0.1 m to 0.04 m. It is proved that the proposed sequential ambiguity resolution method can significantly optimize the results for poorly-observed GNSS data.

2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Farinaz Mirmohammadian ◽  
Jamal Asgari ◽  
Sandra Verhagen ◽  
Alireza Amiri-Simkooei

With the advancement of multi-constellation and multi-frequency global navigation satellite systems (GNSSs), more observations are available for high precision positioning applications. Although there is a lot of progress in the GNSS world, achieving realistic precision of the solution (neither too optimistic nor too pessimistic) is still an open problem. Weighting among different GNSS systems requires a realistic stochastic model for all observations to achieve the best linear unbiased estimation (BLUE) of unknown parameters in multi-GNSS data processing mode. In addition, the correct integer ambiguity resolution (IAR) becomes crucial in shortening the Time-To-Fix (TTF) in RTK, especially in challenging environmental conditions. In general, it is required to estimate various variances for observation types, consider the correlation between different observables, and compensate for the satellite elevation dependence of the observable precision. Quality control of GNSS signals, such as GPS, GLONASS, Galileo, and BeiDou can be performed by processing a zero or short baseline double difference pseudorange and carrier phase observations using the least-squares variance component estimation (LS-VCE). The efficacy of this method is investigated using real multi-GNSS data sets collected by the Trimble NETR9, SEPT POLARX5, and LEICA GR30 receivers. The results show that the standard deviation of observations depends on the system and the observable type in which a particular receiver could have the best performance. We also note that the estimated variances and correlations among different observations are also dependent on the receiver type. It is because the approaches utilized for the recovery techniques differ from one type of receiver to another kind. The reliability of IAR will improve if a realistic stochastic model is applied in single or multi-GNSS data processing. According to the results, for the data sets considered, a realistic stochastic model can increase the computed empirical success rate to 100% in multi-GNSS as well as a single system. As mentioned previously, the realistic precision of the solution can be achieved with a realistic stochastic model. However, using the estimated stochastic model, in fact, leads to better precision and accuracy for the estimated baseline components, up to 39% in multi-GNSS.


Author(s):  
F. Zangeneh-Nejad ◽  
A. R. Amiri-Simkooei ◽  
M. A. Sharifi ◽  
J. Asgari

High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.


2021 ◽  
pp. 1-14
Author(s):  
Haiyang Li ◽  
Guigen Nie ◽  
Jing Wang ◽  
Shuguang Wu ◽  
Yuefan He

Abstract Recent progress in using real-time kinematic (RTK) positioning has motivated the exploration of its application due to its high accuracy and efficiency. However, poorly-observed satellite data will cause unfixed ambiguities and markedly biased solutions. A novel partial ambiguity resolution method, named the irrespective of integer ambiguity resolution (IIAR) model, is proposed and applied to improve the reliability of ambiguity resolution. The proposed method contains initial ambiguity resolution and irrespective of integer ambiguity processes. The initial ambiguity resolution process applies an iterative partial ambiguity resolution method to obtain an approximate solution. The irrespective of integer ambiguity process transforms the approximate solution to a high-precision solution. Experiments show that the approximate solution is unreliable when the initial ambiguity resolution process has small redundancy, and the proposed method can obtain better results for those cases. The IIAR method showed about a 40% improvement of multi-GNSS ambiguity success rate and about a 25% improvement of standard deviation. Therefore, these results show that the proposed IIAR method can improve the results of multi-GNSS RTK positioning significantly.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanke Liu ◽  
Mingkui Wu ◽  
Xiaohong Zhang ◽  
Wang Wang ◽  
Wei Ke ◽  
...  

AbstractThe BeiDou global navigation satellite system (BDS-3) constellation deployment has been completed on June 23, 2020, with a full constellation comprising 30 satellites. In this study, we present the performance assessment of single-epoch Real-Time Kinematic (RTK) positioning with tightly combined BeiDou regional navigation satellite system (BDS-2) and BDS-3. We first investigate whether code and phase Differential Inter-System Biases (DISBs) exist between the legacy B1I/B3I signals of BDS-3/BDS-2. It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints. These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning. Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3. The performance is evaluated through ambiguity resolution success rate, ambiguity dilution of precision, as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan. Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions. Moreover, the RTK performance is much improved with tightly combined BDS-3/BDS-2, particularly in challenging or harsh conditions. The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9% even with an elevation cut-off angle of 40°, indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia–Pacific region. Meanwhile, the three-dimensional (East/North/Up) positioning accuracy of BDS-3 only solution (0.52 cm/0.39 cm/2.14 cm) in the kinematic test is significantly better than that of the BDS-2 only solution (0.85 cm/1.02 cm/3.01 cm) due to the better geometry of the current BDS-3 constellation. The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm, 0.22 cm, and 1.80 cm, respectively.


2021 ◽  
Vol 13 (4) ◽  
pp. 823
Author(s):  
Lin Zhao ◽  
Jiachang Jiang ◽  
Liang Li ◽  
Chun Jia ◽  
Jianhua Cheng

Since the traditional real-time kinematic positioning method is limited by the reduced satellite visibility from the deprived navigational environments, we, therefore, propose an improved RTK method with multiple rover receivers sharing a common clock. The proposed method can enhance observational redundancy by blending the observations from each rover receiver together so that the model strength will be improved. Integer ambiguity resolution of the proposed method is challenged in the presence of several inter-receiver biases (IRB). The IRB including inter-receiver code bias (IRCB) and inter-receiver phase bias (IRPB) is calibrated by the pre-estimation method because of their temporal stability. Multiple BeiDou Navigation Satellite System (BDS) dual-frequency datasets are collected to test the proposed method. The experimental results have shown that the IRCB and IRPB under the common clock mode are sufficiently stable for the ambiguity resolution. Compared with the traditional method, the ambiguity resolution success rate and positioning accuracy of the proposed method can be improved by 19.5% and 46.4% in the restricted satellite visibility environments.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4462
Author(s):  
Haiyang Li ◽  
Guigen Nie ◽  
Dezhong Chen ◽  
Shuguang Wu ◽  
Kezhi Wang

Deformation monitoring of engineering structures using the advanced Global Navigation Satellite System (GNSS) has attracted research interest due to its high-precision, constant availability and global coverage. However, GNSS application requires precise coordinates of points of interest through quick and reliable resolution of integer ambiguities in carrier phase measurements. Conventional integer ambiguity resolution algorithms have been extensively researched indeed in the past few decades, although the application of GNSS to structural health monitoring is still limited. In particular, known a priori information related to the structure of a body of interest is not normally considered. This study proposes a composite strategy that incorporates modified least-squares ambiguity decorrelation adjustment (MLAMBDA) method with priori information of the structural deformation. Data from the observation sites of Baishazhou Bridge are used to test method performance. Compared to MLAMBDA methods that do not consider priori information, the ambiguity success rate (ASR) improves by 20% for global navigation satellite system (GLONASS) and 10% for Multi-GNSS, while running time is reduced by 60 s for a single system and 180 s for Multi-GNSS system. Experimental results of Teaching Experiment Building indicate that our constrained MLAMBDA method improves positioning accuracy and meets the requirements of structural health monitoring, suggesting that the proposed strategy presents an improved integer ambiguity resolution algorithm.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3018 ◽  
Author(s):  
Lei Wang ◽  
Ruizhi Chen ◽  
Lili Shen ◽  
Yanming Feng ◽  
Yuanjin Pan ◽  
...  

In Global navigation satellite system (GNSS) data processing, integer ambiguity acceptance test is considered as a challenging problem. A number of ambiguity acceptance tests have been proposed from different perspective and then unified into the integer aperture estimation (IA) framework. Among all the IA estimators, the optimal integer aperture (OIA) achieves the highest success rate with the fixed failure rate tolerance. However, the OIA is of less practical appealing due to its high computation complexity. On the other hand, the popular discrimination tests employ only two integer candidates, which are the essential reason for their sub-optimality. In this study, a generalized difference test (GDT) is proposed to exploit the benefit of including three or more integer candidates to improve their performance from theoretical perspective. The simulation results indicate that the third best integer candidates contribute to more than 70% success rate improvement for integer bootstrapping success rate higher than 0.8 case. Therefore, the GDT with three integer candidates (GDT3) achieves a good trade-off between the performance and computation burden. The threshold function is also applied for rapid determination of the fixed failure rate (FF)-threshold for GDT3. The performance improvement of GDT3 is validated with real GNSS data set. The numerical results indicate that GDT3 achieves higher empirical success rate while the empirical failure rate remains comparable. In a 20 km baseline test, the success rate GDT3 increase 7% with almost the same empirical failure rate.


Navigation ◽  
2003 ◽  
Vol 50 (4) ◽  
pp. 295-310 ◽  
Author(s):  
M. F. ABDEL-HAFEZ ◽  
Y. J. LEE ◽  
W. R. WILLIAMSON ◽  
J. D. WOLFE ◽  
J. L. SPEYER

Sign in / Sign up

Export Citation Format

Share Document