scholarly journals Analysis of Groundwater Depletion/Inflation and Freeze–Thaw Cycles in the Northern Urumqi Region with the SBAS Technique and an Adjusted Network of Interferograms

2021 ◽  
Vol 13 (11) ◽  
pp. 2144
Author(s):  
Baohang Wang ◽  
Qin Zhang ◽  
Antonio Pepe ◽  
Pietro Mastro ◽  
Chaoying Zhao ◽  
...  

This work investigated the large-scale ground deformations threatening the Northern Urumqi district, China, which are connected to groundwater exploitation and the seasonal freeze–thaw cycles that characterize this frozen region. Ground deformations can be well captured by satellite data using a multi-temporal interferometric synthetic aperture radar (Mt-InSAR) approach. The accuracy of the achievable ground deformation products (e.g., mean displacement time series and related ground displacement time series) critically depends on the number and quality of the selected interferograms. This paper presents a straightforward interferogram selection algorithm that can be applied to identify an optimal network of small baseline (SB) interferograms. The selected SB interferograms are then used to produce ground deformation products using the well-known small baseline subset (SBAS) Mt-InSAR algorithm. The developed interferogram selection algorithm (ISA) permits the selection of the group of SB data pairs that minimize the relative error of the mean ground deformation velocity. Experiments were carried out using a group of 102 Sentinel-1B SAR data collected from 12 April 2017 to 29 October 2020. This research study shows that the investigated farmland region is characterized by a maximum ground deformation rate of about 120 mm/year. Periodic groundwater overexploitation, coupled with irrigation and freeze–thaw phases, is also responsible for seasonal (one-year) ground displacement signals, with oscillation amplitudes up to 120 mm in the zones of maximum displacement.

2021 ◽  
Vol 13 (21) ◽  
pp. 4253
Author(s):  
Lisa Beccaro ◽  
Cristiano Tolomei ◽  
Roberto Gianardi ◽  
Vincenzo Sepe ◽  
Marina Bisson ◽  
...  

Volcanic islands are often affected by ground displacement such as slope instability, due to their peculiar morphology. This is the case of Ischia Island (Naples, Italy) dominated by the Mt. Epomeo (787 m a.s.l.), a volcano-tectonic horst located in the central portion of the island. This study aims to follow a long temporal evolution of ground deformations on the island through the interferometric analysis of satellite SAR data. Different datasets, acquired during Envisat, COSMO-SkyMed and Sentinel-1 satellite missions, are for the first time processed in order to obtain the island ground deformations during a time interval spanning 17 years, from November 2002 to December 2019. In detail, the multitemporal differential interferometry technique, named small baseline subset, is applied to produce the ground displacement maps and the associated displacement time series. The results, validated through the analysis and the comparison with a set of GPS measurements, show that the northwestern side of Mt. Epomeo is the sector of the island characterized by the highest subsidence movements (maximum vertical displacement of 218 mm) with velocities ranging from 10 to 20 mm/yr. Finally, the displacement time series allow us to correlate the measured ground deformations with the seismic swarm started with the Mw 3.9 earthquake that occurred on 21 August 2017. Such correlations highlight an acceleration of the ground, following the mainshock, characterized by a subsidence displacement rate of 0.12 mm/day that returned to pre-earthquake levels (0.03 mm/day) after 6 months from the event.


2021 ◽  
Author(s):  
Mehdi Darvishi ◽  
Fernando Jaramillo

<p>In the recent years, southern Sweden has experienced drought conditions during the summer with potential risks of groundwater shortages. One of the main physical effects of groundwater depletion is land subsidence, a geohazard that potentially damages urban infrastructure, natural resources and can generate casualties. We here investigate land subsidence induced by groundwater depletion and/or seasonal variations in Gotland, an agricultural island in the Baltic Sea experiencing recent hydrological droughts in the summer. Taking advantage of the multiple monitoring groundwater wells active on the island, we explore the existence of a relationship between groundwater fluctuations and ground deformation, as obtained from Interferometric Synthetic Aperture Radar (InSAR). The aim in the long-term is to develop a high-accuracy map of land subsidence with an appropriate temporal and spatial resolution to understand groundwater changes in the area are recognize hydroclimatic and anthropogenic drivers of change.</p><p>We processed Sentinel-1 (S1) data, covering the time span of 2016-2019, by using the Small BAseline Subset (SBAS) to process 119 S1-A/B data (descending mode). The groundwater level of Nineteen wells distributed over the Gotland island were used to assess the relationship between groundwater depletion and the detected InSAR displacement. In addition to that, the roles of other geological key factors such as soil depth, ground capacity in bed rock, karstification, structure of bedrock and soil type in occurring land subsidence also investigated. The findings showed that the groundwater level in thirteen wells with soil depths of less than 5 meters correlated well with InSAR displacements. The closeness of bedrock to ground surface (small soil depth) was responsible for high coherence values near the wells, and enabled the detection land subsidence. The results demonstrated that InSAR could use as an effective monitoring system for groundwater management and can assist in predicting or estimating low groundwater levels during summer conditions.</p>


2020 ◽  
Vol 12 (18) ◽  
pp. 2971
Author(s):  
Jingzhao Ding ◽  
Qing Zhao ◽  
Maochuan Tang ◽  
Fabiana Calò ◽  
Virginia Zamparelli ◽  
...  

In this work, we study ground deformation of ocean-reclaimed platforms as retrieved from interferometric synthetic aperture radar (InSAR) analyses. We investigate, in particular, the suitability and accuracy of some time-dependent models used to characterize and foresee the present and future evolution of ground deformation of the coastal lands. Previous investigations, carried out by the authors of this paper and other scholars, related to the zone of the ocean-reclaimed lands of Shanghai, have already shown that ocean-reclaimed lands are subject to subside (i.e., the ground is subject to settling down due to soil consolidation and compression), and the temporal evolution of that deformation follows a certain predictable model. Specifically, two time-gapped SAR datasets composed of the images collected by the ENVISAT ASAR (ENV) from 2007 to 2010 and the COSMO-SkyMed (CSK) sensors, available from 2013 to 2016, were used to generate long-term ground displacement time-series using a proper time-dependent geotechnical model. In this work, we use a third SAR data set consisting of Radarsat-2 (RST-2) acquisitions collected from 2012 to 2016 to further corroborate the validity of that model. As a result, we verified with the new RST-2 data, partially covering the gap between the ENV and CSK acquisitions, that the adopted model fits the data and that the model is suitable to perform future projections. Furthermore, we extended these analyses to the area of Pearl River Delta (PRD) and the city of Shenzhen, China. Our study aims to investigate the suitability of different time-dependent ground deformation models relying on the different geophysical conditions in the two areas of Shanghai and Shenzhen, China. To this aim, three sets of SAR data, collected by the ENV platform (from both ascending and descending orbits) and the Sentinel-1A (S1A) sensor (on ascending orbits), were used to obtain the ground displacement time-series of the Shenzhen city and its surrounding region. Multi-orbit InSAR data products were also combined to discriminate the up–down (subsidence) ground deformation time-series of the coherent points, which are then used to estimate the parameters of the models adopted to foresee the future evolution of the land-reclaimed ground consolidation procedure. The exploitation of the obtained geospatial data and products are helpful for the continuous monitoring of coastal environments and the evaluation of the socio-economical impacts of human activities and global climate change.


2002 ◽  
Vol 18 (1) ◽  
pp. 19-46 ◽  
Author(s):  
Jean-Pierre Bardet ◽  
Tetsuo Tobita ◽  
Nicholas Mace ◽  
Jianping Hu

Liquefaction-induced ground deformations are permanent ground displacements resulting from earthquakes, which can extend over areas as large as a few square kilometers and have amplitudes ranging from a few centimeters to few tens of meters. This type of ground deformation caused substantial damage to lifelines and pile-foundations of buildings and bridge piers along the Kobe shoreline during the 1995 Hyogoken-Nanbu, Japan, earthquake. This paper presents a four-parameter multiple-linear-regression model for estimating the amplitude of liquefaction-induced ground displacement for both ground-slope and free-face conditions at a regional scale. The applicability of the model for mapping the amplitude of liquefaction-induced ground deformation is investigated over selected regions. The paper also presents a regional model for estimating the probability for the displacements to exceed some threshold amplitude, and to fall within confidence intervals. Both models are useful for risk assessment to spatially distributed lifeline networks resulting from future earthquakes.


2020 ◽  
Vol 10 (7) ◽  
pp. 2294 ◽  
Author(s):  
Mimi Peng ◽  
Chaoying Zhao ◽  
Qin Zhang ◽  
Zhong Lu ◽  
Lin Bai ◽  
...  

Shandong peninsula, the largest peninsula of China, is prone to severe land subsidence hazards along the coastline. In this paper, we provide, for the first time, multi-scale and multi-dimensional time series deformation measurements of the entire Shandong peninsula with advanced time series Interferometric Synthetic Aperture Radar (InSAR) techniques. We derive the spatiotemporal evolutions of the land subsidence by integrating multi-track Sentinel-1A/B and RADARSAT-2 satellite images. InSAR measurements are cross validated by the independent deformation rate results generated from different SAR tracks, reaching a precision of less than 1.3 cm/a. Two-dimensional time series over the Yellow River Delta (YRD) from 2017 to 2019 are revealed by integrating time series InSAR measurements from both descending and ascending tracks. Land subsidence zones are mainly concentrated on the YRD. In total, twelve typical localized subsidence zones are identified in the cities of Dongying (up to 290 mm/a; brine and groundwater exploitation for industrial usage), Weifang (up to 170 mm/a; brine exploitation for industrial usage), Qingdao (up to 70 mm/a; aquaculture and land reclamation), Yantai (up to 50 mm/a; land reclamation) and Rizhao (up to 60 mm/a; land reclamation). The causal factors of localized ground deformation are discussed, encompassing groundwater and brine exploitation, aquaculture and land reclamation. Multi-scale surveys of spatiotemporal deformation evolution and mechanism analysis are critical to make decisions on underground fluid exploitation and land reclamation.


2020 ◽  
Vol 12 (2) ◽  
pp. 299 ◽  
Author(s):  
Yanan Du ◽  
Guangcai Feng ◽  
Lin Liu ◽  
Haiqiang Fu ◽  
Xing Peng ◽  
...  

Coastal areas are usually densely populated, economically developed, ecologically dense, and subject to a phenomenon that is becoming increasingly serious, land subsidence. Land subsidence can accelerate the increase in relative sea level, lead to a series of potential hazards, and threaten the stability of the ecological environment and human lives. In this paper, we adopted two commonly used multi-temporal interferometric synthetic aperture radar (MTInSAR) techniques, Small baseline subset (SBAS) and Temporarily coherent point (TCP) InSAR, to monitor the land subsidence along the entire coastline of Guangdong Province. The long-wavelength L-band ALOS/PALSAR-1 dataset collected from 2007 to 2011 is used to generate the average deformation velocity and deformation time series. Linear subsidence rates over 150 mm/yr are observed in the Chaoshan Plain. The spatiotemporal characteristics are analyzed and then compared with land use and geology to infer potential causes of the land subsidence. The results show that (1) subsidence with notable rates (>20 mm/yr) mainly occurs in areas of aquaculture, followed by urban, agricultural, and forest areas, with percentages of 40.8%, 37.1%, 21.5%, and 0.6%, respectively; (2) subsidence is mainly concentrated in the compressible Holocene deposits, and clearly associated with the thickness of the deposits; and (3) groundwater exploitation for aquaculture and agricultural use outside city areas is probably the main cause of subsidence along these coastal areas.


2013 ◽  
Author(s):  
Hong'an Wu ◽  
Yonghong Zhang ◽  
Ming Guo ◽  
Jufeng Lu

2013 ◽  
Vol 353-356 ◽  
pp. 1451-1455
Author(s):  
Tai Quan Zhou

Horizontal freezing induces ground frost heave and ground displacement happens. Excessive uneven displacement or deformation may be dangerous to the surrounding building. The stratum that a Nanjing subway tunnel will traverse through is the soft and silt clay. The artificial freezing construction method is proposed to help the tunnel to traverse through the worse stratum. To control the ground building deformation and displacement due to the ground frost heave, the frost heave effect for the artificial freezing construction should be predicted before the construction process. The stochastic media theory is proposed to predict the frost heave effect due to the artificial freezing construction in the paper. The basic analysis procedure for analyzing frost heave effect is introduced and ground deformations such as ground vertical displacement, ground curvature are analyzed. The analysis result shows that the ground deformation due to the frost heaves is in the limit of ground displacement control requirement.


2019 ◽  
Vol 3 ◽  
pp. 771
Author(s):  
Arliandy Pratama Arbad ◽  
Wataru Takeuchi ◽  
Yosuke Yosuke ◽  
Mutiara Jamilah ◽  
Achmad Ardy

One of the most active volcanoes in Indonesia is Mt. Bromo, volcanic activities at Mt. Bromo has been recorded in 1775. We observe the surface deformation of the Mt. Bromo which located at eastern Java Indonesia area that includes neighborhood volcanic system on TNBTS (Taman Nasional Bukit Tengger Semeru). Recently, remote sensing has played as an important role to observe volcano behavior. We apply the SAR Interferometry (InSAR) algorithm referred to as Small Baseline Subset (SBAS) approach that allows us to generate mean deformation velocity maps and displacement time series for the studied area. The common SBAS technique, the set of interferometric phase observations writes as a linear combination of individual SAR scene phase values for each pixel independently. Particularly, the proposed analysis is based on 22 SAR data acquired by the ALOS/PALSAR sensors during the 2007–2017 time interval. A fewer studies have been able to show capability of InSAR analysis for investigating cycle of volcano especially of Mt. Bromo which characterized eruption stratovolcano in ranging one to five years. The results expected in this work represent an advancement of previous InSAR studies of the area that are mostly focused on the deformation affecting the caldera. According to the result, we expected this study could implement on risk management or infrastructure management.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Bo Hu

The excessive withdrawal of natural gas can generate a wide range of ground deformation. The aim of this paper is to investigate ground deformation in Chiba Prefecture, Japan, using the Small Baseline Subset (SBAS) technique. In recent years, the local government has taken a series of measures such as artificial recharge and reduction of groundwater withdrawal to alleviate the ground settlement. In order to more fully investigate the spatial and temporal variation of deformation that occurred in Chiba Prefecture, we process a dataset of 34 ASAR images acquired from September 2006 to August 2010 based on SBAS technique and generate the mean deformation velocity map and time series deformation maps. The results show that (1) a relatively stable in Mao Yuan area, with an average subsidence velocity of −0.91 mm/y. (2) large uplift rates were highlighted in albino Ding and Kujukuri, which average deformation velocity were about 5.11 mm/y and 6.15 mm/y respectively.


Sign in / Sign up

Export Citation Format

Share Document