scholarly journals Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest

2021 ◽  
Vol 13 (15) ◽  
pp. 2988
Author(s):  
Yansi Chen ◽  
Jinliang Hou ◽  
Chunlin Huang ◽  
Ying Zhang ◽  
Xianghua Li

Accurate estimation of crop area is essential to adjusting the regional crop planting structure and the rational planning of water resources. However, it is quite challenging to map crops accurately by high-resolution remote sensing images because of the ecological gradient and ecological convergence between crops and non-crops. The purpose of this study is to explore the combining application of high-resolution multi-temporal Sentinel-1 (S1) radar backscatter and Sentinel-2 (S2) optical reflectance images for maize mapping in highly complex and heterogeneous landscapes in the middle reaches of Heihe River, northwest China. We proposed a new two-step method of vegetation extraction and followed by maize extraction, that is, extract the vegetation-covered areas first to reduce the inter-class variance by using a Random Forest (RF) classifier based on S2 data, and then extract the maize distribution in the vegetation area by using another RF classifier based on S1 and/or S2 data. The results demonstrate that the vegetation extraction classifier successfully identified vegetation-covered regions with an overall accuracy above 96% in the study area, and the accuracy of the maize extraction classifier constructed by the combined multi-temporal S1 and S2 images is significantly improved compared with that S1 (alone) or S2 (alone), with an overall accuracy of 87.63%, F1_Score of 0.86, and Kappa coefficient of 0.75. In addition, with the introduction of multi-temporal S1 and/or S2 images in crop growing season, the constructed RF model is more beneficial to maize mapping.

2021 ◽  
Vol 13 (15) ◽  
pp. 2983
Author(s):  
Alberto López-Amoedo ◽  
Xana Álvarez ◽  
Henrique Lorenzo ◽  
Juan Luis Rodríguez

Land fragmentation and small plots are the main features of the rural environment of Galicia (NW Spain). Smallholding limits land use management, representing a drawback in local forest planning. This study analyzes the potential use of multitemporal Sentinel-2 images to detect and control forest cuts in very small pine and eucalyptus plots located in southern Galicia. The proposed approach is based on the analysis of Sentinel-2 NDVI time series in 4231 plots smaller than 3 ha (average 0.46 ha). The methodology allowed us to detect cuts, allocate cut dates and quantify plot areas due to different cutting cycles in an uneven-aged stand. An accuracy of approximately 95% was achieved when the whole plot was cut, with an 81% accuracy for partial cuts. The main difficulty in detecting and dating cuts was related to cloud cover, which affected the multitemporal analysis. In conclusion, the proposed methodology provides an accurate estimation of cutting date and area, helping to improve the monitoring system in sustainable forest certifications to ensure compliance with forest management plans.


2021 ◽  
pp. 777
Author(s):  
Andi Tenri Waru ◽  
Athar Abdurrahman Bayanuddin ◽  
Ferman Setia Nugroho ◽  
Nita Rukminasari

Pulau Tanakeke merupakan salah satu pulau dengan hutan mangrove yang luas di pesisir Sulawesi Selatan. Hutan mangrove ini menjadi ekosistem penting bagi masyarakat sekitar karena nilai ekologi maupun ekonominya. Namun, dalam kurun waktu sekitar tahun 1980-2000, keberadaan mangrove tersebut terancam oleh perubahan penggunaan lahan dan juga pemanfaatan yang berlebihan. Penelitian ini bertujuan untuk menganalisis perubahan temporal luas dan tingkat kerapatan hutan mangrove di Pulau Tanakeke antara tahun 2016 dan 2019. Metode analisis perubahan luasan hutan mangrove menggunakan data citra satelit Sentinel-2 multi temporal berdasarkan hasil klasifikasi hutan mangrove dengan menggunakan random forest pada platform Google Earth Engine. Akurasi keseluruhan hasil klasifikasi hutan mangrove tahun 2016 dan 2019 sebesar 91% dan 98%. Berdasarkan hasil analisis spasial diperoleh perubahan penurunan luasan mangrove yang signifikan dari 800,21 ha menjadi 640,15 ha. Kerapatan mangrove di Pulau Tanakeke sebagian besar tergolong kategori dalam kerapatan tinggi.


2020 ◽  
Vol 12 (23) ◽  
pp. 3933
Author(s):  
Anggun Tridawati ◽  
Ketut Wikantika ◽  
Tri Muji Susantoro ◽  
Agung Budi Harto ◽  
Soni Darmawan ◽  
...  

Indonesia is the world’s fourth largest coffee producer. Coffee plantations cover 1.2 million ha of the country with a production of 500 kg/ha. However, information regarding the distribution of coffee plantations in Indonesia is limited. This study aimed to assess the accuracy of classification model and determine its important variables for mapping coffee plantations. The model obtained 29 variables which derived from the integration of multi-resolution, multi-temporal, and multi-sensor remote sensing data, namely, pan-sharpened GeoEye-1, multi-temporal Sentinel 2, and DEMNAS. Applying a random forest algorithm (tree = 1000, mtry = all variables, minimum node size: 6), this model achieved overall accuracy, kappa statistics, producer accuracy, and user accuracy of 79.333%, 0.774, 92.000%, and 90.790%, respectively. In addition, 12 most important variables achieved overall accuracy, kappa statistics, producer accuracy, and user accuracy 79.333%, 0.774, 91.333%, and 84.570%, respectively. Our results indicate that random forest algorithm is efficient in mapping coffee plantations in an agroforestry system.


2020 ◽  
Author(s):  
Lei Wang ◽  
Haoran Sun ◽  
Wenjun Li ◽  
Liang Zhou

<p>Crop planting structure is of great significance to the quantitative management of agricultural water and the accurate estimation of crop yield. With the increasing spatial and temporal resolution of remote sensing optical and SAR(Synthetic Aperture Radar) images,  efficient crop mapping in large area becomes possible and the accuracy is improved. In this study, Qingyijiang Irrigation District in southwest of China is selected for crop identification methods comparison, which has heterogeneous terrain and complex crop structure . Multi-temporal optical (Sentinel-2) and SAR (Sentinel-1) data were used to calculate NDVI and backscattering coefficient as the main classification indexes. The multi-spectral and SAR data showed significant change in different stages of the whole crop growth period and varied with different crop types. Spatial distribution and texture analysis was also made. Classification using different combinations of indexes were performed using neural network, support vector machine and random forest method. The results showed that, the use of multi-temporal optical data and SAR data in the key growing periods of main crops can both provide satisfactory classification accuracy. The overall classification accuracy was greater than 82% and Kappa coefficient was greater than 0.8. SAR data has high accuracy and much potential in rice identification. However optical data had more accuracy in upland crops classification. In addition, the classification accuracy can be effectively improved by combination of classification indexes from optical and SAR data, the overall accuracy was up to 91.47%. The random forest method was superior to the other two methods in terms of the overall accuracy and the kappa coefficient.</p>


2017 ◽  
Vol 18 (12) ◽  
pp. 3075-3101 ◽  
Author(s):  
Yi Yang ◽  
Jianping Tang ◽  
Zhe Xiong ◽  
Xinning Dong

Abstract The reliability of three satellite-derived precipitation products, Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 and the Climate Prediction Center morphing technique (CMORPH) satellite-only (CMORPH-RAW) and gauge-corrected versions (CMORPH-CRT), and three gauge-based precipitation datasets, Asian Precipitation–Highly Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE), National Climate Center of China Meteorological Administration (CN05.1), and Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), is evaluated via comparisons with rain gauge observations from stations over the Heihe River basin (HRB) for the period from 1998 to 2012. The results show that the observed climatology, interannual variability, the detection of precipitation events, and probability density functions (PDFs) are reasonably well represented by the high-resolution precipitation products (HRPPs), with APHRODITE presenting the best performance, CN05.1 and ITPCAS exhibiting similar performances, and CMORPH-CRT showing a poor performance. The bias-correction algorithms applied in CMORPH-CRT improve the accuracy of CMORPH-RAW slightly but fail to improve the rainfall detection skill. TRMM consistently outperforms CMORPH-CRT at various scales, whereas CMORPH-CRT is comparable to TRMM in summer. The spatial correlations, normalized root-mean-square error (NRMSE), and probability of detection (POD) show that all datasets perform better in summer than in winter. Except for CMORPH-RAW, the HRPPs could adequately reproduce the unimodal characteristics of annual cycle, although they overestimate the magnitude of the warm season precipitation. The HRPPs could capture the overall spatial distribution and decadal trend of extreme precipitation indices. However, the satellite-derived products overestimate the wet day precipitation and underestimate the consecutive dry days, although the TRMM generates relatively better results.


2020 ◽  
Vol 12 (24) ◽  
pp. 4103
Author(s):  
Zhe Wang ◽  
Haiying Wang ◽  
Fen Qin ◽  
Zhigang Han ◽  
Changhong Miao

Accurately identifying and delineating urban boundaries are the premise for and foundation of the control of disorderly urban sprawl, which is helpful for us to accurately grasp the scale and form of cities, optimize the internal spatial structure and pattern of cities, and guide the expansion of urban spaces in the future. At present, the concept and delineation of urban boundaries do not follow a unified method or standard. However, many scholars have made use of multi-source remote sensing images of various scales and social auxiliary data such as point of interest (POI) data to achieve large-scale, high-resolution, and high-precision land cover mapping and impermeable water surface mapping. The accuracy of small- and medium-scale urban boundary mapping has not been improved to an obvious extent. This study uses multi-temporal Sentinel-2 high-resolution images and POI data that can reflect detailed features of human activities to extract multi-dimensional features and use random forests and mathematical morphology to map the urban boundaries of the city of Zhengzhou. The research results show that: (1) the urban construction land extraction model established with multi-dimensional features has a great improvement in accuracy; (2) when the training sample accounts for 65% of the sample data set, the urban construction land extraction model has the highest accuracy, reaching 96.25%, and the Kappa coefficient is 0.93; (3) the optimized boundary of structural elements with a size of 13 × 13 is selected, which is in good agreement in terms of scope and location with the boundary of FROM-GLC10 (Zhengzhou) and visual interpretations. The results from the urban boundary delineation in this paper can be used as an important database for detailed basic land use mapping within cities. Moreover, the method in this paper has some reference value for other cities in terms of delineating urban boundaries.


Sign in / Sign up

Export Citation Format

Share Document