crops planting area identification and analysis based on multi-source high resolution remote sensing data

Author(s):  
Lei Wang ◽  
Haoran Sun ◽  
Wenjun Li ◽  
Liang Zhou

<p>Crop planting structure is of great significance to the quantitative management of agricultural water and the accurate estimation of crop yield. With the increasing spatial and temporal resolution of remote sensing optical and SAR(Synthetic Aperture Radar) images,  efficient crop mapping in large area becomes possible and the accuracy is improved. In this study, Qingyijiang Irrigation District in southwest of China is selected for crop identification methods comparison, which has heterogeneous terrain and complex crop structure . Multi-temporal optical (Sentinel-2) and SAR (Sentinel-1) data were used to calculate NDVI and backscattering coefficient as the main classification indexes. The multi-spectral and SAR data showed significant change in different stages of the whole crop growth period and varied with different crop types. Spatial distribution and texture analysis was also made. Classification using different combinations of indexes were performed using neural network, support vector machine and random forest method. The results showed that, the use of multi-temporal optical data and SAR data in the key growing periods of main crops can both provide satisfactory classification accuracy. The overall classification accuracy was greater than 82% and Kappa coefficient was greater than 0.8. SAR data has high accuracy and much potential in rice identification. However optical data had more accuracy in upland crops classification. In addition, the classification accuracy can be effectively improved by combination of classification indexes from optical and SAR data, the overall accuracy was up to 91.47%. The random forest method was superior to the other two methods in terms of the overall accuracy and the kappa coefficient.</p>


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4012 ◽  
Author(s):  
Jianing Zhen ◽  
Jingjuan Liao ◽  
Guozhuang Shen

Mangrove forests are distributed in intertidal regions that act as a “natural barrier” to the coast. They have enormous ecological, economic, and social value. However, the world’s mangrove forests are declining under immense pressure from anthropogenic and natural disturbances. Accurate information regarding mangrove forests is essential for their protection and restoration. The main objective of this study was to develop a method to improve the classification of mangrove forests using C-band quad-pol Synthetic Aperture Radar (SAR) data (Radarsat-2) and optical data (Landsat 8), and to analyze the spectral and backscattering signatures of mangrove forests. We used a support vector machine (SVM) classification method to classify the land use in Hainan Dongzhaigang National Nature Reserve (HDNNR). The results showed that the overall accuracy using only optical information was 83.5%. Classification accuracy was improved to a varying extent by the addition of different radar data. The highest overall accuracy was 95.0% based on a combination of SAR and optical data. The area of mangrove forest in the reserve was found to be 1981.7 ha, as determined from the group with the highest classification accuracy. Combining optical data with SAR data could improve the classification accuracy and be significant for mangrove forest conservation.



2020 ◽  
Vol 44 (4) ◽  
pp. 627-635
Author(s):  
A.M. Belov ◽  
A.Y. Denisova

Earth remote sensing data fusion is intended to produce images of higher quality than the original ones. However, the fusion impact on further thematic processing remains an open question because fusion methods are mostly used to improve the visual data representation. This article addresses an issue of the effect of fusion with increasing spatial and spectral resolution of data on thematic classification of images using various state-of-the-art classifiers and features extraction methods. In this paper, we use our own algorithm to perform multi-frame image fusion over optical remote sensing images with different spatial and spectral resolutions. For classification, we applied support vector machines and Random Forest algorithms. For features, we used spectral channels, extended attribute profiles and local feature attribute profiles. An experimental study was carried out using model images of four imaging systems. The resulting image had a spatial resolution of 2, 3, 4 and 5 times better than for the original images of each imaging system, respectively. As a result of our studies, it was revealed that for the support vector machines method, fusion was inexpedient since excessive spatial details had a negative effect on the classification. For the Random Forest algorithm, the classification results of a fused image were more accurate than for the original low-resolution images in 90% of cases. For example, for images with the smallest difference in spatial resolution (2 times) from the fusion result, the classification accuracy of the fused image was on average 4% higher. In addition, the results obtained for the Random Forest algorithm with fusion were better than the results for the support vector machines method without fusion. Additionally, it was shown that the classification accuracy of a fused image using the Random Forest method could be increased by an average of 9% due to the use of extended attribute profiles as features. Thus, when using data fusion, it is better to use the Random Forest classifier, whereas using fusion with the support vector machines method is not recommended.



2021 ◽  
Vol 13 (14) ◽  
pp. 2793
Author(s):  
Jianbo Yang ◽  
Jianchu Xu ◽  
De-Li Zhai

Most natural rubber trees (Hevea brasiliensis) are grown on plantations, making rubber an important industrial crop. Rubber plantations are also an important source of household income for over 20 million people. The accurate mapping of rubber plantations is important for both local governments and the global market. Remote sensing has been a widely used approach for mapping rubber plantations, typically using optical remote sensing data obtained at the regional scale. Improving the efficiency and accuracy of rubber plantation maps has become a research hotspot in rubber-related literature. To improve the classification efficiency, researchers have combined the phenology, geography, and texture of rubber trees with spectral information. Among these, there are three main classifiers: maximum likelihood, QUEST decision tree, and random forest methods. However, until now, no comparative studies have been conducted for the above three classifiers. Therefore, in this study, we evaluated the mapping accuracy based on these three classifiers, using four kinds of data input: Landsat spectral information, phenology–Landsat spectral information, topography–Landsat spectral information, and phenology–topography–Landsat spectral information. We found that the random forest method had the highest mapping accuracy when compared with the maximum likelihood and QUEST decision tree methods. We also found that adding either phenology or topography could improve the mapping accuracy for rubber plantations. When either phenology or topography were added as parameters within the random forest method, the kappa coefficient increased by 5.5% and 6.2%, respectively, compared to the kappa coefficient for the baseline Landsat spectral band data input. The highest accuracy was obtained from the addition of both phenology–topography–Landsat spectral bands to the random forest method, achieving a kappa coefficient of 97%. We therefore mapped rubber plantations in Xishuangbanna using the random forest method, with the addition of phenology and topography information from 1990–2020. Our results demonstrated the usefulness of integrating phenology and topography for mapping rubber plantations. The machine learning approach showed great potential for accurate regional mapping, particularly by incorporating plant habitat and ecological information. We found that during 1990–2020, the total area of rubber plantations had expanded to over three times their former area, while natural forests had lost 17.2% of their former area.



Author(s):  
M. Iyyappan ◽  
S. S. Ramakrishnan ◽  
K. Srinivasa Raju

The study about on landuse and landcover classification using multi polarization and multi temporal C-band Synthetic Aperture Radar (SAR) data of recently launched multi-mode of RISAT-1 (Radar Imaging Satellite) by Indian Space Research Organization (ISRO) and European satellite, Envisat ASAR data. The backscattering coefficient were extracted for various land features from Cband SAR data. The training sample collecting from satellite optical imagery of study and field visit for verification. The training samples are used for the supervised classification technique of maximum Likelihood (ML) algorithms, Neural Network (NN) and Support Vector Machine (SVM) algorithms were applied for fourteen different polarizations combination of multi temporal and multiple polarizations. The previous study was carried only four band combination of RISAT 1 data, the continuation of work both SAR data were used in this study. The Classification results are verified with confusion matrix. The pixel based classification gives the good results in the dual polarization of CRS – HH and HV of RISAT −1 compared to dual polarization Envisat ASAR data. Meanwhile the quad Polarization combination of Envisat ASAR data got better classification accuracy. The SVM classifiers has given better classification results for all band combination followed by ML and NN. The Scrub are better identified in EnviSat ASAR – VV & VH Polarization and Plantation are better identified in EnviSat ASAR – HH, HH-HV & HV Polarization. The classification accuracy of both Scrub and Plantation is about 80 % in EnviSat ASAR – HH, VH & VV Polarization combination.



2018 ◽  
Vol 2018 ◽  
pp. 1-27
Author(s):  
Mengmeng Sun ◽  
Chunyang Wang ◽  
Shuangting Wang ◽  
Zongze Zhao ◽  
Xiao Li

The purposes of the algorithm presented in this paper are to select features with the highest average separability by using the random forest method to distinguish categories that are easy to distinguish and to select the most divisible features from the most difficult categories using the weighted entropy algorithm. The framework is composed of five parts:(1)random samples selection with(2)probabilistic output initial random forest classification processing based on the number of votes;(3)semisupervised classification, which is an improvement of the supervision classification of random forest based on the weighted entropy algorithm;(4)precision evaluation; and(5)a comparison with the traditional minimum distance classification and the support vector machine (SVM) classification. In order to verify the universality of the proposed algorithm, two different data sources are tested, which are AVIRIS and Hyperion data. The results show that the overall classification accuracy of AVIRIS data is up to 87.36%, the kappa coefficient is up to 0.8591, and the classification time is 22.72s. Hyperion data is up to 99.17%, the kappa coefficient is up to 0.9904, and the classification time is 8.16s. Classification accuracy is obviously improved and efficiency is greatly improved, compared with the minimum distance and the SVM classifier and the CART classifier.



2019 ◽  
Vol 11 (11) ◽  
pp. 1351 ◽  
Author(s):  
Tsitsi Bangira ◽  
Silvia Maria Alfieri ◽  
Massimo Menenti ◽  
Adriaan van Niekerk

Small reservoirs play an important role in mining, industries, and agriculture, but storage levels or stage changes are very dynamic. Accurate and up-to-date maps of surface water storage and distribution are invaluable for informing decisions relating to water security, flood monitoring, and water resources management. Satellite remote sensing is an effective way of monitoring the dynamics of surface waterbodies over large areas. The European Space Agency (ESA) has recently launched constellations of Sentinel-1 (S1) and Sentinel-2 (S2) satellites carrying C-band synthetic aperture radar (SAR) and a multispectral imaging radiometer, respectively. The constellations improve global coverage of remotely sensed imagery and enable the development of near real-time operational products. This unprecedented data availability leads to an urgent need for the application of fully automatic, feasible, and accurate retrieval methods for mapping and monitoring waterbodies. The mapping of waterbodies can take advantage of the synthesis of SAR and multispectral remote sensing data in order to increase classification accuracy. This study compares automatic thresholding to machine learning, when applied to delineate waterbodies with diverse spectral and spatial characteristics. Automatic thresholding was applied to near-concurrent normalized difference water index (NDWI) (generated from S2 optical imagery) and VH backscatter features (generated from S1 SAR data). Machine learning was applied to a comprehensive set of features derived from S1 and S2 data. During our field surveys, we observed that the waterbodies visited had different sizes and varying levels of turbidity, sedimentation, and eutrophication. Five machine learning algorithms (MLAs), namely decision tree (DT), k-nearest neighbour (k-NN), random forest (RF), and two implementations of the support vector machine (SVM) were considered. Several experiments were carried out to better understand the complexities involved in mapping spectrally and spatially complex waterbodies. It was found that the combination of multispectral indices with SAR data is highly beneficial for classifying complex waterbodies and that the proposed thresholding approach classified waterbodies with an overall classification accuracy of 89.3%. However, the varying concentrations of suspended sediments (turbidity), dissolved particles, and aquatic plants negatively affected the classification accuracies of the proposed method, whereas the MLAs (SVM in particular) were less sensitive to such variations. The main disadvantage of using MLAs for operational waterbody mapping is the requirement for suitable training samples, representing both water and non-water land covers. The dynamic nature of reservoirs (many reservoirs are depleted at least once a year) makes the re-use of training data unfeasible. The study found that aggregating (combining) the thresholding results of two SAR and multispectral features, namely the S1 VH polarisation and the S2 NDWI, respectively, provided better overall accuracies than when thresholding was applied to any of the individual features considered. The accuracies of this dual thresholding technique were comparable to those of machine learning and may thus offer a viable solution for automatic mapping of waterbodies.



2021 ◽  
Author(s):  
Hayder Dibs ◽  
Hashim Ali Hasab ◽  
Ammar Shaker Mahmoud ◽  
Nadhir Al-Ansari

Abstract Adopting a low spatial resolution remote sensing imagery to get an accurate estimation of land-use and land-cover (LU/LC) is a very difficult task to perform. Image fusion plays a big role to map the LU/LC. Therefore, This study aims to find out a refining method for the LU/LC estimating by adopting these steps; (1) apply a three pan-sharpening fusion approaches to combine panchromatic (PAN) imagery has high spatial resolution with multispectral (MS) imagery has low spatial resolution, (2) employing five pixel-based classifier approaches on MS and fused images; artificial neural net (ANN), support vector machine (SVM), parallelepiped (PP), Mahalanobis distance (Mah) and spectral angle mapper (SAM), (3) Make a statistical comparison between classification results. The Landsat-8 image was adopted for this research. There are twenty LU/LC thematic maps were created in this study. A suitable and reliable LU/LC method was presented based on the obtained results. The validations of the results were performed by adopting a confusion matrix. A comparison made between the classification results of MS and all fused images levels. It proved that mapping the LU/LC produced by Gram-Schmidt Pan-sharpening (GS) and classified by SVM method has the most accurate result among all other MS and fused images that classified by the other classifiers, it has an overall accuracy about (99.85%) and a kappa coefficient of about (0.98). However, the SAM algorithm has the lowest accuracy compared to all other adopted methods, with overall accuracy of 53.41% and the kappa coefficient of about 0.48. The proposed procedure is useful in the industry and academic side for estimating purposes. In addition, it is also a good tool for analysts and researchers, who could interest to extend the technique to employ different datasets and regions.



Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Yu Jin ◽  
Jiawei Guo ◽  
Huichun Ye ◽  
Jinling Zhao ◽  
Wenjiang Huang ◽  
...  

The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays an important role in investigating the distribution of arecanut planting area and the subsequent adjustment and optimization of regional planting structures. Satellite imagery has previously been used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting distribution based on feature space optimization. First, spectral and textural feature variables were selected to form the initial feature space, followed by the implementation of the random forest algorithm to optimize the feature space. Arecanut planting area extraction models based on the support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and 7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize the initial feature space, composed of spectral and textural feature variables, further improving the extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and technical reference for the agricultural and forestry industries.



Author(s):  
Ge Han ◽  
Wei Gong ◽  
Xiaohui Cui ◽  
Miao Zhang ◽  
Jun Chen

The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.



2018 ◽  
Vol 10 (10) ◽  
pp. 1642 ◽  
Author(s):  
Kristof Van Tricht ◽  
Anne Gobin ◽  
Sven Gilliams ◽  
Isabelle Piccard

A timely inventory of agricultural areas and crop types is an essential requirement for ensuring global food security and allowing early crop monitoring practices. Satellite remote sensing has proven to be an increasingly more reliable tool to identify crop types. With the Copernicus program and its Sentinel satellites, a growing source of satellite remote sensing data is publicly available at no charge. Here, we used joint Sentinel-1 radar and Sentinel-2 optical imagery to create a crop map for Belgium. To ensure homogenous radar and optical inputs across the country, Sentinel-1 12-day backscatter mosaics were created after incidence angle normalization, and Sentinel-2 normalized difference vegetation index (NDVI) images were smoothed to yield 10-daily cloud-free mosaics. An optimized random forest classifier predicted the eight crop types with a maximum accuracy of 82% and a kappa coefficient of 0.77. We found that a combination of radar and optical imagery always outperformed a classification based on single-sensor inputs, and that classification performance increased throughout the season until July, when differences between crop types were largest. Furthermore, we showed that the concept of classification confidence derived from the random forest classifier provided insight into the reliability of the predicted class for each pixel, clearly showing that parcel borders have a lower classification confidence. We concluded that the synergistic use of radar and optical data for crop classification led to richer information increasing classification accuracies compared to optical-only classification. Further work should focus on object-level classification and crop monitoring to exploit the rich potential of combined radar and optical observations.



Sign in / Sign up

Export Citation Format

Share Document