scholarly journals Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology

2021 ◽  
Vol 13 (17) ◽  
pp. 3453
Author(s):  
Michael Dieter Martin ◽  
Iestyn Barr ◽  
Benjamin Edwards ◽  
Matteo Spagnolo ◽  
Sanaz Vajedian ◽  
...  

Globally, about 250 Holocene volcanoes are either glacier-clad or have glaciers in close proximity. Interactions between volcanoes and glaciers are therefore common, and some of the most deadly (e.g., Nevado del Ruiz, 1985) and most costly (e.g., Eyjafjallajökull, 2010) eruptions of recent years were associated with glaciovolcanism. An improved understanding of volcano-glacier interactions is therefore of both global scientific and societal importance. This study investigates the potential of using optical satellite images to detect volcanic impacts on glaciers, with a view to utilise detected changes in glacier surface morphology to improve glacier-clad volcano monitoring and eruption forecasting. Roughly 1400 optical satellite images are investigated from key, well-documented eruptions around the globe during the satellite remote sensing era (i.e., 1972 to present). The most common observable volcanic impact on glacier morphology (for both thick and thin ice-masses) is the formation of ice cauldrons and openings, often associated with concentric crevassing. Other observable volcanic impacts include ice bulging and fracturing due to subglacial dome growth; localized crevassing adjacent to supraglacial lava flows; widespread glacier crevassing, presumably, due to meltwater-triggered glacier acceleration and advance. The main limitation of using optical satellite images to investigate changes in glacier morphology is the availability of cloud- and eruption-plume-free scenes of sufficient spatial- and temporal resolution. Therefore, for optimal monitoring and eruption prediction at glacier-clad volcanoes, optical satellite images are best used in combination with other sources, including SAR satellite data, aerial images, ground-based observations and satellite-derived products (e.g., DEMs).

2012 ◽  
Vol 58 (209) ◽  
pp. 569-580 ◽  
Author(s):  
Dirk Scherler ◽  
Manfred R. Strecker

AbstractDespite global warming and unlike their Himalayan neighbours, glaciers in the Karakoram mountains do not show signs of significant retreat. Here we report high velocity variations of Biafo Glacier, central Karakoram, which occurred between 2001 and 2009 and which indicate considerable dynamics in its flow behaviour. We have generated a dense time series of glacier surface velocities, based on cross-correlation of optical satellite images, which clearly shows seasonal and interannual velocity variations, reaching 50% in some places. The interannual velocity variations resemble the passing of a broad wave of high velocities, with peak velocities during 2005 and some diffusion down-glacier over a period of at least 4 years. High interannual velocity variations are also observed at other glaciers in the vicinity, suggesting a common cause, although these appear to partly comprise longer acceleration phases. Analysis of weather station data provides some indications of meteorological conditions that could have promoted sustained sliding events during this period, but this does not explain the wave-like nature of the acceleration at Biafo Glacier, and the regular, protracted velocity changes.


2016 ◽  
Vol 62 (236) ◽  
pp. 1153-1166 ◽  
Author(s):  
ANTOINE RABATEL ◽  
JEAN PIERRE DEDIEU ◽  
CHRISTIAN VINCENT

AbstractRemote sensing is a powerful method to reconstruct annual mass-balance series over past decades by exploiting archives of available images, as well as to study glaciers in inaccessible regions. We present the application of a methodological framework based only on optical satellite images to retrieve glacier-wide annual mass balances for 30 glaciers in the French Alps. The glacier-wide annual mass balance for the period 1983–2014 was reconstructed by combining changes in glacier volumes computed from remote-sensing derived DEMs with annual measurements of the snow line altitude on satellite images. Data from direct observations on two of the glaciers confirmed the accuracy of the annual mass balances quantified by remote sensing with an average difference of ~0.3 m w.e., within the uncertainty range of the methods. Our results confirm the significant increase in mass loss since the early 2000s, with a difference >1 m w.e. a−1 between the periods 1983–2002 and 2003–14. The region-wide mass balance for the French Alps over the period 1979–2011 was −0.66 ± 0.27 m w.e. a−1, close to that of the European Alps. We also show that changes in glacier surface area or length are not representative of changes in mass balance at the scale of a few decades.


2012 ◽  
Vol E95.B (5) ◽  
pp. 1890-1893
Author(s):  
Wang LUO ◽  
Hongliang LI ◽  
Guanghui LIU ◽  
Guan GUI

2021 ◽  
Vol 13 (8) ◽  
pp. 1505
Author(s):  
Klaudia Kryniecka ◽  
Artur Magnuszewski

The lower Vistula River was regulated in the years 1856–1878, at a distance of 718–939 km. The regulation plan did not take into consideration the large transport of the bed load. The channel was shaped using simplified geometry—too wide for the low flow and overly straight for the stabilization of the sandbar movement. The hydraulic parameters of the lower Vistula River show high velocities of flow and high shear stress. The movement of the alternate sandbars can be traced on the optical satellite images of Sentinel-2. In this study, a method of sandbar detection through the remote sensing indices, Sentinel Water Mask (SWM) and Automated Water Extraction Index no shadow (AWEInsh), and the manual delineation with visual interpretation (MD) was used on satellite images of the lower Vistula River, recorded at the time of low flows (20 August 2015, 4 September 2016, 30 July 2017, 20 September 2018, and 29 August 2019). The comparison of 32 alternate sandbar areas obtained by SWM, AWEInsh, and MD manual delineation methods on the Sentinel-2 images, recorded on 20 August 2015, was performed by the statistical analysis of the interclass correlation coefficient (ICC). The distance of the shift in the analyzed time intervals between the image registration dates depends on the value of the mean discharge (MQ). The period from 30 July 2017 to 20 September 2018 was wet (MQ = 1140 m3 × s−1) and created conditions for the largest average distance of the alternate sandbar shift, from 509 to 548 m. The velocity of movement, calculated as an average shift for one day, was between 1.2 and 1.3 m × day−1. The smallest shift of alternate sandbars was characteristic of the low flow period from 20 August 2015 to 4 September 2016 (MQ = 306 m3 × s−1), from 279 to 310 m, with an average velocity from 0.7 to 0.8 m × day−1.


2021 ◽  
Author(s):  
Andreas Linsbauer ◽  
Matthias Huss ◽  
Elias Hodel ◽  
Andreas Bauder ◽  
Mauro Fischer ◽  
...  

<p>With increasing anthropogenic greenhouse gas emissions and corresponding global warming, glaciers in Switzerland are shrinking rapidly as in many mountain ranges on Earth. Repeated glacier inventories are a key task to monitor such glacier changes and provide detailed information on the extent of glaciation, and important parameters such as area, elevation range, slope, aspect etc. for a given point or a period in time. Here we present the new Swiss Glacier Inventory (SGI2016) that has been acquired based on high-resolution aerial imagery and digital elevation models in cooperation with the Federal Office of Topography (swisstopo) and Glacier Monitoring in Switzerland (GLAMOS), bringing together topological and glaciological knowhow. We define the process, workflow and required glaciological adaptations to compile a highly accurate glacier inventory based on the digital Swiss topographic landscape model (swissTLM<sup>3D</sup>).</p><p>The SGI2016 provides glacier outlines (areas), supraglacial debris cover, ice divides and location points of all glaciers in Switzerland referring to the years 2013-2018, whereas most of the glacier outlines have been mapped based on aerial images acquired between 2015-2017 (75% in number and 87% in area), with the centre year 2016. The SGI2016 maps 1400 individual glacier entities with a total glacier surface area of 961 km<sup>2</sup> (whereof 11% / 104 km<sup>2</sup> are debris-covered) and constitutes the so far most detailed cartographic representation of glacier extent in Switzerland. Analysing the dependencies between topographic parameters and debris-cover fraction on the basis of individual glaciers reveals that short glaciers with a moderate mean slope and glaciers with a low median elevation tend to have high debris fractions. A change assessment between the SGI1973 and SGI2016 based on individual glacier entities affirms the largest relative area changes for small glaciers and for low-elevation glaciers, whereas the largest glaciers show small relative area changes, though large absolute changes. The analysis further indicates a tendency for glaciers with a high share of supraglacial debris to show larger relative area changes.</p><p>Despite of an observed strong glacier volume loss between 2010 and 2016, the total glacier surface area of the SGI2016 is somewhat larger than reported in the last Swiss glacier inventory SGI2010. Even though both inventories were created based on swisstopo aerial photographs, the additional data, tools, resources and methodologies used by the professional cartographers digitizing glacier outlines in 3D for the SGI2016, are able to explain the counter-intuitive difference between SGI2010 and SGI2016. A direct comparison of these two datasets is thus not meaningful, but an experiment where a representative glacier sample of the SGI2010 was re-assessed based on the approaches of the SGI2016 led to an upscaled total glacier surface area of 1010 km<sup>2</sup> for the Swiss Alps around 2010. This indicates an area loss of 49 km<sup>2</sup> between the two last Swiss glacier inventories. As swisstopo data products are and will be regularly updated, the SGI2016 is the first step towards a consistent and accurate data product of repeated glacier inventories in six-year time intervals that promises a high comparability for individual glaciers and glacier samples.</p>


Sign in / Sign up

Export Citation Format

Share Document