scholarly journals An Optimized Deep Neural Network for Overhead Contact System Recognition from LiDAR Point Clouds

2021 ◽  
Vol 13 (20) ◽  
pp. 4110
Author(s):  
Siping Liu ◽  
Xiaohan Tu ◽  
Cheng Xu ◽  
Lipei Chen ◽  
Shuai Lin ◽  
...  

As vital infrastructures, high-speed railways support the development of transportation. To maintain the punctuality and safety of railway systems, researchers have employed manual and computer vision methods to monitor overhead contact systems (OCSs), but they have low efficiency. Investigators have also used light detection and ranging (LiDAR) to generate point clouds by emitting laser beams. The point cloud is segmented for automatic OCS recognition, which improves recognition efficiency. However, existing LiDAR point cloud segmentation methods have high computational/model complexity and latency. In addition, they cannot adapt to embedded devices with different architectures. To overcome these issues, this article presents a lightweight neural network EffNet consisting of three modules: ExtractA, AttenA, and AttenB. ExtractA extracts the features from the disordered and irregular point clouds of an OCS. AttenA keeps information flowing in EffNet while extracting useful features. AttenB uses channel and spatialwise statistics to enhance important features and suppress unimportant ones efficiently. To further speed up EffNet and match it with diverse architectures, we optimized it with a generation framework of tensor programs and deployed it on embedded systems with different architectures. Extensive experiments demonstrated that EffNet has at least a 0.57% higher mean accuracy, but with 25.00% and 9.30% lower computational and model complexity for OCS recognition than others, respectively. The optimized EffNet can be adapted to different architectures. Its latency decreased by 51.97%, 56.47%, 63.63%, 82.58%, 85.85%, and 91.97% on the NVIDIA Nano CPU, TX2 CPU, UP Board CPU, Nano GPU, TX2 GPU, and RTX 2,080 Ti GPU, respectively.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2731
Author(s):  
Yunbo Rao ◽  
Menghan Zhang ◽  
Zhanglin Cheng ◽  
Junmin Xue ◽  
Jiansu Pu ◽  
...  

Accurate segmentation of entity categories is the critical step for 3D scene understanding. This paper presents a fast deep neural network model with Dense Conditional Random Field (DCRF) as a post-processing method, which can perform accurate semantic segmentation for 3D point cloud scene. On this basis, a compact but flexible framework is introduced for performing segmentation to the semantics of point clouds concurrently, contribute to more precise segmentation. Moreover, based on semantics labels, a novel DCRF model is elaborated to refine the result of segmentation. Besides, without any sacrifice to accuracy, we apply optimization to the original data of the point cloud, allowing the network to handle fewer data. In the experiment, our proposed method is conducted comprehensively through four evaluation indicators, proving the superiority of our method.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4961
Author(s):  
Xiao Chen ◽  
Zhuang Chen ◽  
Guoxiang Liu ◽  
Kun Chen ◽  
Lu Wang ◽  
...  

As the railway overhead contact system (OCS) is the key component along the high-speed railway, it is crucial to detect the quality of the OCS. Compared with conventional manual OCS detection, the vehicle-mounted Light Detection and Ranging (LiDAR) technology has advantages such as high efficiency and precision, which can solve the problems of OCS detection difficulty, low efficiency, and high risk. Aiming at the contact cables, return current cables, and catenary cables in the railway vehicle-mounted LiDAR OCS point cloud, this paper used a scale adaptive feature classification algorithm and the DBSCAN (density-based spatial clustering of applications with noise) algorithm considering OCS characteristics to classify the OCS point cloud. Finally, the return current cables, catenary cables, and contact cables in the OCS were accurately classified and extracted. To verify the accuracy of the method presented in this paper, we compared the experimental results of this article with the classification results of TerraSolid, and the classification results were evaluated in terms of four accuracy indicators. According to statistics, the average accuracy of using this method to extract two sets of OCS point clouds is 99.83% and 99.89%, respectively; the average precision is 100% and 99.97%, respectively; the average recall is 99.16% and 99.42%, respectively; and the average overall accuracy is 99.58% and 99.69% respectively, which is overall better than TerraSolid. The experimental results showed that this approach could accurately and quickly extract the complete OCS from the point cloud. It provides a new method for processing railway OCS point clouds and has high engineering application value in railway component detection.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 139781-139791
Author(s):  
Jinming Zhang ◽  
Xiangyun Hu ◽  
Hengming Dai

2019 ◽  
Vol 11 (23) ◽  
pp. 2727 ◽  
Author(s):  
Ming Huang ◽  
Pengcheng Wei ◽  
Xianglei Liu

Plane segmentation is a basic yet important process in light detection and ranging (LiDAR) point cloud processing. The traditional point cloud plane segmentation algorithm is typically affected by the number of point clouds and the noise data, which results in slow segmentation efficiency and poor segmentation effect. Hence, an efficient encoding voxel-based segmentation (EVBS) algorithm based on a fast adjacent voxel search is proposed in this study. First, a binary octree algorithm is proposed to construct the voxel as the segmentation object and code the voxel, which can compute voxel features quickly and accurately. Second, a voxel-based region growing algorithm is proposed to cluster the corresponding voxel to perform the initial point cloud segmentation, which can improve the rationality of seed selection. Finally, a refining point method is proposed to solve the problem of under-segmentation in unlabeled voxels by judging the relationship between the points and the segmented plane. Experimental results demonstrate that the proposed algorithm is better than the traditional algorithm in terms of computation time, extraction accuracy, and recall rate.


Author(s):  
K. Liu ◽  
J. Boehm

Point cloud segmentation is a fundamental problem in point processing. Segmenting a point cloud fully automatically is very challenging due to the property of point cloud as well as different requirements of distinct users. In this paper, an interactive segmentation method for point clouds is proposed. Only two strokes need to be drawn intuitively to indicate the target object and the background respectively. The draw strokes are sparse and don't necessarily cover the whole object. Given the strokes, a weighted graph is built and the segmentation is formulated as a minimization problem. The problem is solved efficiently by using the Max Flow Min Cut algorithm. In the experiments, the mobile mapping data of a city area is utilized. The resulting segmentations demonstrate the efficiency of the method that can be potentially applied for general point clouds.


2020 ◽  
Vol 37 (6) ◽  
pp. 1019-1027
Author(s):  
Ali Saglam ◽  
Hasan B. Makineci ◽  
Ömer K. Baykan ◽  
Nurdan Akhan Baykan

Point cloud processing is a struggled field because the points in the clouds are three-dimensional and irregular distributed signals. For this reason, the points in the point clouds are mostly sampled into regularly distributed voxels in the literature. Voxelization as a pretreatment significantly accelerates the process of segmenting surfaces. The geometric cues such as plane directions (normals) in the voxels are mostly used to segment the local surfaces. However, the sampling process may include a non-planar point group (patch), which is mostly on the edges and corners, in a voxel. These voxels can cause misleading the segmentation process. In this paper, we separate the non-planar patches into planar sub-patches using k-means clustering. The largest one among the planar sub-patches replaces the normal and barycenter properties of the voxel with those of itself. We have tested this process in a successful point cloud segmentation method and measure the effects of the proposed method on two point cloud segmentation datasets (Mosque and Train Station). The method increases the accuracy success of the Mosque dataset from 83.84% to 87.86% and that of the Train Station dataset from 85.36% to 87.07%.


Author(s):  
M. Bassier ◽  
M. Bonduel ◽  
B. Van Genechten ◽  
M. Vergauwen

Point cloud segmentation is a crucial step in scene understanding and interpretation. The goal is to decompose the initial data into sets of workable clusters with similar properties. Additionally, it is a key aspect in the automated procedure from point cloud data to BIM. Current approaches typically only segment a single type of primitive such as planes or cylinders. Also, current algorithms suffer from oversegmenting the data and are often sensor or scene dependent.<br><br> In this work, a method is presented to automatically segment large unstructured point clouds of buildings. More specifically, the segmentation is formulated as a graph optimisation problem. First, the data is oversegmented with a greedy octree-based region growing method. The growing is conditioned on the segmentation of planes as well as smooth surfaces. Next, the candidate clusters are represented by a Conditional Random Field after which the most likely configuration of candidate clusters is computed given a set of local and contextual features. The experiments prove that the used method is a fast and reliable framework for unstructured point cloud segmentation. Processing speeds up to 40,000 points per second are recorded for the region growing. Additionally, the recall and precision of the graph clustering is approximately 80%. Overall, nearly 22% of oversegmentation is reduced by clustering the data. These clusters will be classified and used as a basis for the reconstruction of BIM models.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Gong ◽  
Xiaofeng Du ◽  
Kai Zhu ◽  
Ke Lin ◽  
Qiaojun Lou ◽  
...  

The automated measurement of crop phenotypic parameters is of great significance to the quantitative study of crop growth. The segmentation and classification of crop point cloud help to realize the automation of crop phenotypic parameter measurement. At present, crop spike-shaped point cloud segmentation has problems such as fewer samples, uneven distribution of point clouds, occlusion of stem and spike, disorderly arrangement of point clouds, and lack of targeted network models. The traditional clustering method can realize the segmentation of the plant organ point cloud with relatively independent spatial location, but the accuracy is not acceptable. This paper first builds a desktop-level point cloud scanning apparatus based on a structured-light projection module to facilitate the point cloud acquisition process. Then, the rice ear point cloud was collected, and the rice ear point cloud data set was made. In addition, data argumentation is used to improve sample utilization efficiency and training accuracy. Finally, a 3D point cloud convolutional neural network model called Panicle-3D was designed to achieve better segmentation accuracy. Specifically, the design of Panicle-3D is aimed at the multiscale characteristics of plant organs, combined with the structure of PointConv and long and short jumps, which accelerates the convergence speed of the network and reduces the loss of features in the process of point cloud downsampling. After comparison experiments, the segmentation accuracy of Panicle-3D reaches 93.4%, which is higher than PointNet. Panicle-3D is suitable for other similar crop point cloud segmentation tasks.


Author(s):  
D. Costantino ◽  
M. G. Angelini ◽  
F. Settembrini

The paper presents a software dedicated to the elaboration of point clouds, called <i>Intelligent Cloud Viewer</i> (ICV), made in-house by AESEI software (Spin-Off of Politecnico di Bari), allowing to view point cloud of several tens of millions of points, also on of “no” very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc), maths (BLAS, EIGEN), computational geometry (CGAL, <i>Computational Geometry Algorithms Library</i>), registration and advanced algorithms for point clouds (PCL, <i>Point Cloud Library</i>), advanced data structures (BOOST, <i>Basic Object Oriented Supporting Tools</i>), etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (<i>Terrestrial Laser Scanner</i>) data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (<i>Above Ground Level</i>) and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.


Sign in / Sign up

Export Citation Format

Share Document