scholarly journals A ROTI-Aided Equatorial Plasma Bubbles Detection Method

2021 ◽  
Vol 13 (21) ◽  
pp. 4356
Author(s):  
Long Tang ◽  
Osei-Poku Louis ◽  
Wu Chen ◽  
Mingli Chen

In this study, we present a Rate of Total Electron Content Index (ROTI)-aided equatorial plasma bubbles (EPBs) detection method based on a Global Navigation Satellite System (GNSS) ionospheric Total Electron Content (TEC). This technique seeks the EPBs occurrence time according to the ROTI values and then extracts the detrended ionospheric TEC series, which include EPBs signals using a low-order, partial polynomial fitting strategy. The EPBs over the Hong Kong area during the year of 2014 were detected using this technique. The results show that the temporal distribution and occurrence of EPBs over the Hong Kong area are consistent with that of previous reports, and most of the TEC depletion error is smaller than 1.5 TECU (average is 0.63 TECU), suggesting that the detection method is feasible and highly accurate. Furthermore, this technique can extract the TEC depletion series more effectively, especially for those with a long duration, compared to previous method.

2015 ◽  
Vol 33 (1) ◽  
pp. 129-135 ◽  
Author(s):  
J. Park ◽  
H. Lühr ◽  
M. Noja

Abstract. Total electron content (TEC) between Low-Earth-Orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain the three-dimensional morphology of equatorial plasma bubbles (EPBs). In this study we investigate TEC measured onboard the Challenging Minisatellite Payload (CHAMP) from 2001 to 2005. We only use TEC data obtained when CHAMP passed through EPBs: that is, when in situ plasma density measurements at CHAMP altitude also show EPB signatures. The observed TEC gradient along the CHAMP track is strongest when the corresponding GNSS satellite is located equatorward and westward of CHAMP with elevation angles of about 40–60°. These elevation and azimuth angles are in agreement with the angles expected from the morphology of the plasma depletion shell proposed by Kil et al.(2009).


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 676
Author(s):  
Guanyi Ma ◽  
Klemens Hocke ◽  
Jinghua Li ◽  
Qingtao Wan ◽  
Weijun Lu ◽  
...  

Ground- and space-based Global Navigation Satellite System (GNSS) receivers can provide three-dimensional (3D) information about the occurrence of equatorial plasma bubbles (EPBs). For this study, we selected March 2014 data (during solar maximum of cycle 24) for the analysis. The timing and the latitudinal dependence of the EPBs occurrence rate are derived by means of the rate of the total electron content (TEC) index (ROTI) data from GNSS receivers in China, whereas vertical profiles of the scintillation index S4 are provided by COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). The GNSS receivers of the low Earth orbit satellites give information about the occurrence of amplitude scintillations in limb sounding geometry where the focus is on magnetic latitudes from 20° S to 20° N. The occurrence rates of the observed EPB-induced scintillations are generally smaller than those of the EPB-induced ROTI variations. The timing and the latitude dependence of the EPBs occurrence rate agree between the ground-based and spaceborne GNSS data. We find that EPBs occur at 19:00 LT and they are mainly situated above the F2 peak layer which descended from 450 km at 20:00 LT to 300 km at 24:00 LT in the equatorial ionosphere. At the same time, the spaceborne GNSS data also show, for the first time, a high occurrence rate of post-sunset scintillations at 100 km altitude, indicating the coexistence of equatorial sporadic E with EPBs.


2019 ◽  
Vol 30 ◽  
pp. 15007
Author(s):  
George Minasyan ◽  
Ivan Nesterov ◽  
Yaroslav Ilyushin

Based on the analysis of the phase data of the global navigation satellite system, distributions of time derivatives of the L1 phase frequency and the total electronic content are obtained. The change in the distributions of observed statistics of time derivatives of the total electron content was analyzed, because there are cycle slips in signals of navigation satellites. According to the analysis of the statistics of the phase of signals, an assumption about the physical and technical reasons for phase failures was made. The correlation between time derivatives of the phase signals and the total electron content has been obtained, despite the apparent dependence of the latter on the phase of the signal. This ratio showed that neither direct nor inverse dependence of the change in the distribution of time derivatives in both of quantities was found.


Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar

The plasma irregularities have been frequently observed in the F-region, at low latitude regions, due to the instability processes occurring in the ionosphere. The depletions in electron density, as compared to the background density, is a signature of the plasma irregularities. These irregularities are also known as the “equatorial plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all sky imager (ASI). The current chapter is based on the review on the signature of the EPBs in TEC and ASI. measurements. We have also discussed the importance of the study of EPBs.


2021 ◽  
Vol 6 (24) ◽  
pp. 152-160
Author(s):  
Siti Syukriah Khamdan ◽  
Tajul Ariffin Musa ◽  
Suhaila M. Buhari

This paper presents the detection of the equatorial plasma bubbles (EPB) using the Global Positioning System (GPS) ionospheric tomography method over Peninsular Malaysia. This paper aims to investigate the capability of the GPS ionospheric tomography method in detecting the variations of the EPB over the study area. In doing so, a previous case study during post-sunset 5th April 2011 has been selected as a reference for the detection of the EPBs over the study area. It has been observed that at least three structures of the EPBs have been captured based on the rate of change total electron content (TEC) index (ROTI) from 12 UT until 19 UT. Therefore, the three-dimensional ionospheric profiles have been reconstructed over Peninsular Malaysia using the tomography method during the study period in order to capture the signature of the EPBs. In this study, the detection of the EPBs using the tomography method is based on the rate of change of electron density (ROTNe). The results from three-dimensional ionospheric tomography show only two structures of EPBs are detected during the study period. It has been observed that the ROTNe depleted up to ~-12x109el/cm. Overall, the results in this study show that the GPS ionospheric tomography capable to be utilized in detecting the variations of EPBs in support of ionospheric studies and monitoring in the Malaysian region.


Sign in / Sign up

Export Citation Format

Share Document