scholarly journals Stitching and Geometric Modeling Approach Based on Multi-Slice Satellite Images

2021 ◽  
Vol 13 (22) ◽  
pp. 4663
Author(s):  
Longhui Wang ◽  
Yan Zhang ◽  
Tao Wang ◽  
Yongsheng Zhang ◽  
Zhenchao Zhang ◽  
...  

Time delay and integration (TDI) charge-coupled device (CCD) is an image sensor for capturing images of moving objects at low light levels. This study examines the model construction of stitched TDI CCD original multi-slice images. The traditional approaches, for example, include the image-space-oriented algorithm and the object-space-oriented algorithm. The former indicates concise principles and high efficiency, whereas the panoramic stitching images lack the clear geometric relationships generated from the image-space-oriented algorithm. Similarly, even though the object-space-oriented algorithm generates an image with a clear geometric relationship, it is time-consuming due to the complicated and intensive computational demands. In this study, we developed a multi-slice satellite images stitching and geometric model construction method. The method consists of three major steps. First, the high-precision reference data assist in block adjustment and obtain the original slice image bias-corrected RFM to perform multi-slice image block adjustment. The second process generates the panoramic stitching image by establishing the image coordinate conversion relationship from the panoramic stitching image to the original multi-slice images. The final step is dividing the panoramic stitching image uniformly into image grids and employing the established image coordinate conversion relationship and the original multi-slice image bias-corrected RFM to generate a virtual control grid to construct the panoramic stitching image RFM. To evaluate the performance, we conducted experiments using the Tianhui-1(TH-1) high-resolution image and the Ziyuan-3(ZY-3) triple liner-array image data. The experimental results show that, compared with the object-space-oriented algorithm, the stitching accuracy loss of the generated panoramic stitching image was only 0.2 pixels and that the mean value was 0.799798 pixels, achieving the sub-pixel stitching requirements. Compared with the object-space-oriented algorithm, the RFM positioning difference of the panoramic stitching image was within 0.3 m, which achieves equal positioning accuracy.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shi Zhao ◽  
Tien-Fu Lu ◽  
Larissa Statsenko ◽  
Benjamin Koch ◽  
Chris Garcia

Purpose In the mining industry, a run-of-mine (ROM) stockpile is a temporary storage unit, but it is also widely accepted as an effective method to reduce the short-term variations of ore grade. However, tracing ore grade at ROM stockpiles accurately using most current fleet management systems is challenging, due to insufficient information available in real time. This study aims to build a three-dimensional (3D) model for ROM stockpiles continuously based on fine-grained grade information through integrating data from a number of ore grade tracking sources. Design/methodology/approach Following a literature review, a framework for a new stockpile management system is proposed. In this system, near real-time high-resolution 3D ROM stockpile models are created based on dump/load locations measured from global positioning system sensors. Each stockpile model contains a group of layers which are separated by different qualities. Findings Acquiring the geometric shapes of all the layers in a stockpile and cuts made by front wheel loaders provides a better understanding about the quality and quality distribution within a stockpile when it is stacked/reclaimed. Such a ROM stockpile model can provide information on predicating ore blend quality with high accuracy and high efficiency. Furthermore, a 3D stockyard model created based on such ROM stockpile models can help organisations optimise material flow and reduce the cost. Research limitations/implications The modelling algorithm is evaluated using a laboratory scaled stockpile at this stage. The authors expect to scan a real stockpile and create a reference model from it. Meanwhile, the geometric model cannot represent slump or collapse during reclaiming faithfully. Therefore, the model is expected to be reconcile monthly using laser scanning data. Practical implications The proposed model is currently translated to the operations at OZ Minerals. The use of such model will reduce the handling costs and improve the efficiency of existing grade management systems in the mining industry. Originality/value This study provides a solution to build a near real-time high-resolution multi-layered 3D stockpile model through using currently available information and resources. Such novel and low-cost stockpile model will improve the production rates with good output product quality control.


2020 ◽  
Vol 28 (4) ◽  
pp. 247-252
Author(s):  
Alexander Lozhkin ◽  
Pavol Bozek ◽  
Konstantin Maiorov

AbstractThe geometric model accuracy is crucial for product design. More complex surfaces are represented by the approximation methods. On the contrary, the approximation methods reduce the design quality. A new alternative calculation method is proposed. The new method can calculate both conical sections and more complex curves. The researcher is able to get an analytical solution and not a sequence of points with the destruction of the object semantics. The new method is based on permutation and other symmetries and should have an origin in the internal properties of the space. The classical method consists of finding transformation parameters for symmetrical conic profiles, however a new procedure for parameters of linear transformations determination was acquired by another method. The main steps of the new method are theoretically presented in the paper. Since a double result is obtained in most stages, the new calculation method is easy to verify. Geometric modeling in the AutoCAD environment is shown briefly. The new calculation method can be used for most complex curves and linear transformations. Theoretical and practical researches are required additionally.


Author(s):  
A. A. Chekalin ◽  
M. K. Reshetnikov ◽  
V. V. Shpilev ◽  
S. V. Borodulina ◽  
S. A. Ryazanov

For the design of surfaces in architecture, as a rule, universal techniques developed for other technical industries are used. First of all, these are general kinematic surfaces and interpolation cubic splines for modeling complex piecewise smooth surfaces. The authors propose to use the fourth degree inerodifferential spline developed by them for problems of geometric modeling of architectural forms. For calculations and constructions on a computer, the proposed spline is not much more complicated than traditional cubic splines, since it has one additional parameter - a coefficient. However, this allows you to locally control the shape of a curve or surface during design, that is, to change the shape in individual areas without affecting other areas. The article proposes a method for constructing a geometric model of the kinematic surface of dependent sections with a fourth degree parabola as a generator. When using cubic splines as a guide, the surface is a 3 × 4 non-uniform (heterogeneous) spline. The article shows that the surface on the basis of the proposed mathematical apparatus can be composite piecewise-smooth. A particular case of surface design is considered on the example of creating a model of the surface of the facade of a residential building according to the existing concept. The algorithm can be easily programmed and added as a tool to existing CAD systems.


Author(s):  
S. Rhee ◽  
T. Kim

3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.


2010 ◽  
Vol 10 (04) ◽  
pp. 643-666 ◽  
Author(s):  
ERIC BERTHONNAUD ◽  
MELISSA MORROW ◽  
GUILLAUME HERZBERG ◽  
KAI-NAN AN ◽  
JOANNES DIMNET

A three-dimensional (3D) geometric model for predicting muscle forces in the shoulder complex is proposed. The model was applied throughout the range of arm elevation in the scapular plan. In vitro testing has been performed on 13 cadaveric shoulders. The objectives were to determine homogeneous values of physiological parameters of shoulder muscles and to locate sites of muscular attachment to any bone of the shoulder complex. Muscular fiber lengths, lengths of contractile element (CE), and muscle volumes were measured, corresponding physiological cross-sectional area (PCSA) were calculated, and force/length muscle relations were found. An in vivo biplanar radiography was performed on five volunteers. The photogrammetric reconstruction of bone axes and landmarks were coupled with a geometric modeling of bones and muscle sites of attachment. Muscular paths were drawn and changes in lengths during movement have been estimated. Directions of muscle forces are the same as that of muscular path at the point of attachment to bone. Magnitudes of muscular forces were found from muscle lengths coupled with force/length relations. Passive forces were directly determined contrary to active muscle forces. A resulting active muscle force is calculated from balancing weight and passive forces at each articular center. Active muscle forces were calculated by distributing the resulting force among active muscles based on the muscular PCSA values.


2019 ◽  
Vol 11 (9) ◽  
pp. 1097 ◽  
Author(s):  
Aleš Marsetič ◽  
Peter Pehani

This paper presents an automatic procedure for the geometric corrections of very-high resolution (VHR) optical panchromatic satellite images. The procedure is composed of three steps: an automatic ground control point (GCP) extraction algorithm that matches the linear features that were extracted from the satellite image and reference data; a geometric model that applies a rational function model; and, the orthorectification procedure. Accurate geometric corrections can only be achieved if GCPs are employed to precisely correct the geometric biases of images. Due to the high resolution and the varied acquisition geometry of images, we propose a fast, segmentation based method for feature extraction. The research focuses on densely populated urban areas, which are very challenging in terms of feature extraction and matching. The proposed algorithm is capable of achieving results with a root mean square error of approximately one pixel or better, on a test set of 14 panchromatic Pléiades images. The procedure is robust and it performs well in urban areas, even for images with high off-nadir angles.


2019 ◽  
Vol 110 ◽  
pp. 01057
Author(s):  
Yuri Deniskin ◽  
Pavel Miroshnichenko ◽  
Andrew Smolyaninov

The article is devoted to the development of a geometric model of surfaces of dependent sections to solve the problems of winding by continuous fibers in the direction of the force and its related process of automated winding of composite materials. A uniform method for specifying the surfaces of dependent sections with a curvilinear generator and a method for solid modeling of the shell obtained by winding or calculation methods are described.


Sign in / Sign up

Export Citation Format

Share Document