scholarly journals Methodology of Calculating the Number of Trees Based on ALS Data for Forestry Applications for the Area of Samławki Forest District

2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Wioleta Błaszczak-Bąk ◽  
Joanna Janicka ◽  
Tomasz Kozakiewicz ◽  
Krystian Chudzikiewicz ◽  
Grzegorz Bąk

Airborne Laser Scanning (ALS) is a technology often used to study forest areas. The main area of application of ALS in forests is collecting data to determine the height of individual trees and entire stands, tree density and stand biomass. The content of the ALS data is also classified, i.e., registered objects are identified, including the species affiliation of individual trees. Important information for forest districts includes other parameters related to the structure and share of stands and the number of trees in the forest district. The main goal of this study was to propose the new ALS data processing methodology for detecting single trees in the Samławki Forest District. The idea of the proposed methodology is to indicate a free and accessible solution for any user (at least in Poland). This new ALS data processing methodology contributes to research on the use of ALS data in forest districts to maintain up-to-date and accurate stand statistics. This methodology was based on free data from the geoportal.gov.pl portal and free software, which allowed to minimize the costs of preparing data for the needs of forestry activities. In cooperation with the Samławki Forest District, the proposed methodology was used to detect the number and heights of trees for two forest addresses 13b and 30a, and then to calculate the volume of stands. As a result, the volume of the analyzed stands was calculated, obtaining values differing from the nominal ones included in the FMP (Forest Management Plan) by about 25% and 5%, respectively, for larch and oak.

2021 ◽  
Vol 11 ◽  
Author(s):  
David Pont ◽  
Heidi S. Dungey ◽  
Mari Suontama ◽  
Grahame T. Stovold

Phenotyping individual trees to quantify interactions among genotype, environment, and management practices is critical to the development of precision forestry and to maximize the opportunity of improved tree breeds. In this study we utilized airborne laser scanning (ALS) data to detect and characterize individual trees in order to generate tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to account for environmental variation and its relative importance on individual-tree traits, we investigated the use of spatial models using ALS-derived competition metrics and conventional autoregressive spatial techniques. Models utilizing competition covariate terms were found to quantify previously unexplained phenotypic variation compared with standard models, substantially reducing residual variance and improving estimates of heritabilities for a set of operationally relevant traits. Models including terms for spatial autocorrelation and competition performed the best and were labelled ACE (autocorrelation-competition-error) models. The best ACE models provided statistically significant reductions in residuals ranging from −65.48% for tree height (H) to −21.03% for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64% for H to 14.01% for A. Individual tree phenotyping using an ACE approach is therefore recommended for analyses of research trials where traits are susceptible to spatial effects.


2020 ◽  
Vol 12 (20) ◽  
pp. 3328
Author(s):  
Mohammad Imangholiloo ◽  
Ninni Saarinen ◽  
Markus Holopainen ◽  
Xiaowei Yu ◽  
Juha Hyyppä ◽  
...  

Information from seedling stands in time and space is essential for sustainable forest management. To fulfil these informational needs with limited resources, remote sensing is seen as an intriguing alternative for forest inventorying. The structure and tree species composition in seedling stands have created challenges for capturing this information using sensors providing sparse point densities that do not have the ability to penetrate canopy gaps or provide spectral information. Therefore, multispectral airborne laser scanning (mALS) systems providing dense point clouds coupled with multispectral intensity data theoretically offer advantages for the characterization of seedling stands. The aim of this study was to investigate the capability of Optech Titan mALS data to characterize seedling stands in leaf-off and leaf-on conditions, as well as to retrieve the most important forest inventory attributes, such as distinguishing deciduous from coniferous trees, and estimating tree density and height. First, single-tree detection approaches were used to derive crown boundaries and tree heights from which forest structural attributes were aggregated for sample plots. To predict tree species, a random forests classifier was trained using features from two single-channel intensities (SCIs) with wavelengths of 1550 (SCI-Ch1) and 1064 nm (SCI-Ch2), and multichannel intensity (MCI) data composed of three mALS channels. The most important and uncorrelated features were analyzed and selected from 208 features. The highest overall accuracies in classification of Norway spruce, birch, and nontree class in leaf-off and leaf-on conditions obtained using SCI-Ch1 and SCI-Ch2 were 87.36% and 69.47%, respectively. The use of MCI data improved classification by up to 96.55% and 92.54% in leaf-off and leaf-on conditions, respectively. Overall, leaf-off data were favorable for distinguishing deciduous from coniferous trees and tree density estimation with a relative root mean square error (RMSE) of 37.9%, whereas leaf-on data provided more accurate height estimations, with a relative RMSE of 10.76%. Determining the canopy threshold for separating ground returns from vegetation returns was found to be critical, as mapped trees might have a height below one meter. The results showed that mALS data provided benefits for characterizing seedling stands compared to single-channel ALS systems.


2017 ◽  
Vol 168 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Julia Menk ◽  
Luuk Dorren ◽  
Johannes Heinzel ◽  
Mauro Marty ◽  
Markus Huber

Evaluation of automated single-tree recognition from airborne laser scanning data In the present study, we investigated whether the detection tool FINT (Find Individual Trees) can identify single trees out of canopy height models (CHM) precisely enough to assess the protective effect of forests, even on steep slopes. For this purpose, reference trees were measured and described in twelve randomly selected sample plots in the Bündner Herrschaft and Schanfigg regions (Canton Graubünden, Switzerland). CHMs of different resolution and smoothing were generated from airborne laser scanning data for each sample plot and subsequently processed with FINT. In addition, we tested whether the use of a model that defines the minimum distance between a tree and its neighbours based on its height (MBA model) improved the quality of the results. The study showed that a finer-resolution CHM combined with stronger smoothing produced results comparable to those obtained with an unsmoothed and lower-resolution CHM. The smallest difference between the numbers of trees measured and detected was achieved with the 1-m resolution CHM, with no smoothing and no MBA model. In conclusion, FINT can provide a basis for assessing the protective effect of a forest with its existing structures, and its results – after evaluation in the field – can be directly integrated into natural hazard simulation models.


2017 ◽  
Vol 63 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Maroš Sedliak ◽  
Ivan Sačkov ◽  
Ladislav Kulla

AbstractRemote Sensing provides a variety of data and resources useful in mapping of forest. Currently, one of the common applications in forestry is the identification of individual trees and tree species composition, using the object-based image analysis, resulting from the classification of aerial or satellite imagery. In the paper, there is presented an approach to the identification of group of tree species (deciduous - coniferous trees) in diverse structures of close-to-nature mixed forests of beech, fir and spruce managed by selective cutting. There is applied the object-oriented classification based on multispectral images with and without the combination with airborne laser scanning data in the eCognition Developer 9 software. In accordance to the comparison of classification results, the using of the airborne laser scanning data allowed identifying ground of terrain and the overall accuracy of classification increased from 84.14% to 87.42%. Classification accuracy of class “coniferous” increased from 82.93% to 85.73% and accuracy of class “deciduous” increased from 84.79% to 90.16%.


Forests ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 212 ◽  
Author(s):  
Parviz Fatehi ◽  
Alexander Damm ◽  
Reik Leiterer ◽  
Mahtab Pir Bavaghar ◽  
Michael Schaepman ◽  
...  

2014 ◽  
Vol 40 (3) ◽  
pp. 110-115 ◽  
Author(s):  
Robert Smreček ◽  
Zuzana Michňova

In the work, a fully automatic approach for vegetation delineation using ALS data is presented. Nowadays, in Slovakia, aerial images and satellite scenes are used for this purpose. For vegetation identification, the measurement of local transparency and roughness directly in 3D point cloud was used. The aim was the identification of groups of trees with area bigger than 0.1 ha and individual trees. On the experimental area, 33 polygons representing groups of trees and 120 individual trees were identified. For groups of trees the accuracy of identification was 100%. For comparison, an area with reference polygons, which were manually vectorised by the operator on the orthophotos with spatial resolution 30 cm, was used. The average difference in the area was –0.26%, with standard deviation ±8.17%. The distance of borders of reference polygons and polygons derived from ALS data was also compared, average distance for border parts that fall inside the reference polygons was 2.24 m with standard deviation of ±2.8 m. The average distance for borders parts that fall outside of the reference polygons was 1.84 m with standard deviation ±2.04 m. The accuracy of individual trees identification was 98%.


Sign in / Sign up

Export Citation Format

Share Document