scholarly journals A Quadrature Single Side-Band Mixer with Passive Negative Resistance in Software-Defined Frequency Synthesizer

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3455 ◽  
Author(s):  
Dongsheng Liu ◽  
Ang Hu ◽  
Kefeng Zhang

Software-defined radio (SDR) is a good solution for complying with the existing and incoming protocols for emerging wireless sensor networks (WSN) and internet of things (IoT) applications. The frequency synthesizer in a SDR tranceiver usually consists of a phase locked loop (PLL) and a post synthesizer. The PLL is the narrow band signal source and the post synthesizer generates wideband outputs by mixing and dividing. Compared with a frequency synthesizer utilizing the wideband PLL, this synthesizer features relatively constant loop parameters and mitigates the requirement for the oscillator. In this paper, a quadrature single side-band (QSSB) mixer with the proposed passive negative resistance (PNR) for frequency mixing in a post synthesizer is presented. The PNR is achieved by biasing the Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET) of the cross-coupled pair at the deep-triode region periodically and incorporates an inductor and a cap-array as the mixer load. Compared with the traditional single side-band mixers utilizing Inductor-Capacitor (LC) resonant loads or quality factor enhanced (Q-enhanced) LC resonant loads, which suffer from a selectivity versus working range trade-off, the mixer employing the proposed loading structure provides not only a wide operating range, but also a superior image side-band rejection ratio (ISRR). Moreover, the oscillating risk in conventional mixers adopting Q-enhanced LC resonant loads is eliminated. A wideband frequency synthesizer employing the proposed mixer was implemented in a TSMC 0.18 µm CMOS process and the mixer performed ISRR of 40–57 dB and 30–57 dB across 2.5–3 GHz and 2.3–3.2 GHz, respectively. The power consumption of the QSSB mixer, including buffer, is 18 mA from a 1.8 V supply and the active area is 0.445 mm2. The measurement results provide validation that the proposed QSSB mixer is suitable for wideband software-defined frequency synthesizers and other frequency generating systems.

2010 ◽  
Vol 8 ◽  
pp. 167-173
Author(s):  
S. Haßler ◽  
T. Reichthalhammer ◽  
E. Biebl

Abstract. To achieve high range resolution in synthetic aperture radar imaging a frequency synthesizer with high bandwidth is a possible solution. To operate in the required frequency band an LF-signal usually has to be upconverted. In this paper we describe the design and realization of a broadband Single-Side-Band Mixer with a very short settling time between frequency steps of arbitrary length inside a high bandwidth. Compared to already existing SSB-Mixers, our novel concept has three major advantages: At first, the mixer could be used in combination with an arbitrary signal source. Due to a modular circuit concept it is possible to use the system for different input frequency ranges. Moreover, just by changing single modules, the output frequency-range can be adapted to individual requirements. Thirdly, as a main advantage, the system is able to generate a high frequency output span with a very fast settling time between frequency steps. Even with applied steps up to 400 MHz, the settling time remains below 3 μs, which is more than 5 times faster than the settling time of similar synthesizers.


2016 ◽  
Vol 13 (4) ◽  
pp. 143-154 ◽  
Author(s):  
Jim Holmes ◽  
A. Matthew Francis ◽  
Ian Getreu ◽  
Matthew Barlow ◽  
Affan Abbasi ◽  
...  

In the last decade, significant effort has been expended toward the development of reliable, high-temperature integrated circuits. Designs based on a variety of active semiconductor devices including junction field-effect transistors and metal-oxide-semiconductor (MOS) field-effect transistors have been pursued and demonstrated. More recently, advances in low-power complementary MOS (CMOS) devices have enabled the development of highly integrated digital, analog, and mixed-signal integrated circuits. The results of elevated temperature testing (as high as 500°C) of several building block circuits for extended periods (up to 100 h) are presented. These designs, created using the Raytheon UK's HiTSiC® CMOS process, present the densest, lowest-power integrated circuit technology capable of operating at extreme temperatures for any period. Based on these results, Venus nominal temperature (470°C) transistor models and gate-level timing models were created using parasitic extracted simulations. The complete CMOS digital gate library is suitable for logic synthesis and lays the foundation for complex integrated circuits, such as a microcontroller. A 16-bit microcontroller, based on the OpenMSP 16-bit core, is demonstrated through physical design and simulation in SiC-CMOS, with an eye for Venus as well as terrestrial applications.


2014 ◽  
Vol 41 (8) ◽  
pp. 0805001
Author(s):  
侯云哲 Hou Yunzhe ◽  
王肇颖 Wang Zhaoying ◽  
秦旭伟 Qin Xuwei ◽  
刘士圆 Liu Shiyuan ◽  
罗莎 Luo Sha ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4731
Author(s):  
Wei-Ren Chen ◽  
Yao-Chuan Tsai ◽  
Po-Jen Shih ◽  
Cheng-Chih Hsu ◽  
Ching-Liang Dai

The fabrication and characterization of a magnetic micro sensor (MMS) with two magnetic field effect transistors (MAGFETs) based on the commercial complementary metal oxide semiconductor (CMOS) process are investigated. The magnetic micro sensor is a three-axis sensing type. The structure of the magnetic microsensor is composed of an x/y-MAGFET and a z-MAGFET. The x/y-MAGFET is employed to sense the magnetic field (MF) in the x- and y-axis, and the z-MAGFET is used to detect the MF in the z-axis. To increase the sensitivity of the magnetic microsensor, gates are introduced into the two MAGFETs. The sensing current of the MAGFET enhances when a bias voltage is applied to the gates. The finite element method software Sentaurus TCAD was used to analyze the MMS’s performance. Experiments show that the MMS has a sensitivity of 182 mV/T in the x-axis MF and a sensitivity of 180 mV/T in the y-axis MF. The sensitivity of the MMS is 27.8 mV/T in the z-axis MF.


Sign in / Sign up

Export Citation Format

Share Document