scholarly journals Spectral Unmixing of Hyperspectral Remote Sensing Imagery via Preserving the Intrinsic Structure Invariant

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3528 ◽  
Author(s):  
Yang Shao ◽  
Jinhui Lan ◽  
Yuzhen Zhang ◽  
Jinlin Zou

Hyperspectral unmixing, which decomposes mixed pixels into endmembers and corresponding abundance maps of endmembers, has obtained much attention in recent decades. Most spectral unmixing algorithms based on non-negative matrix factorization (NMF) do not explore the intrinsic manifold structure of hyperspectral data space. Studies have proven image data is smooth along the intrinsic manifold structure. Thus, this paper explores the intrinsic manifold structure of hyperspectral data space and introduces manifold learning into NMF for spectral unmixing. Firstly, a novel projection equation is employed to model the intrinsic structure of hyperspectral image preserving spectral information and spatial information of hyperspectral image. Then, a graph regularizer which establishes a close link between hyperspectral image and abundance matrix is introduced in the proposed method to keep intrinsic structure invariant in spectral unmixing. In this way, decomposed abundance matrix is able to preserve the true abundance intrinsic structure, which leads to a more desired spectral unmixing performance. At last, the experimental results including the spectral angle distance and the root mean square error on synthetic and real hyperspectral data prove the superiority of the proposed method over the previous methods.

2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Xiaochen Lv ◽  
Wenhong Wang ◽  
Hongfu Liu

Hyperspectral unmixing is an important technique for analyzing remote sensing images which aims to obtain a collection of endmembers and their corresponding abundances. In recent years, non-negative matrix factorization (NMF) has received extensive attention due to its good adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing methods are developed by incorporating additional constraints into the standard NMF based on the spectral and spatial information of hyperspectral images. However, they neglect to exploit the nature of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately estimated due to the statistical property of NMF. To exploit the information of imbalanced samples in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed. Specifically, based on the result of clustering conducted on the hyperspectral image, we construct a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can provide an appropriate weight value to the reconstruction error between each original pixel and the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced samples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity constraints of abundance and graph-based regularization, respectively. The experimental results on both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed methods has been demonstrated by comparing them with several state-of-the-art methods.


2021 ◽  
Vol 13 (9) ◽  
pp. 1693
Author(s):  
Anushree Badola ◽  
Santosh K. Panda ◽  
Dar A. Roberts ◽  
Christine F. Waigl ◽  
Uma S. Bhatt ◽  
...  

Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest.


2018 ◽  
Vol 4 (12) ◽  
pp. 142 ◽  
Author(s):  
Hongda Shen ◽  
Zhuocheng Jiang ◽  
W. Pan

Hyperspectral imaging (HSI) technology has been used for various remote sensing applications due to its excellent capability of monitoring regions-of-interest over a period of time. However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive lossless compression algorithm that can achieve significant gains on compression efficiency, by also taking into account temporal correlations inherent in the multitemporal data. We present an information theoretic analysis to estimate potential compression performance gain with varying configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in the prediction model for both multitemporal HSI and conventional 3D HSI data.


2021 ◽  
Author(s):  
Xiangyu Song ◽  
Sunil Aryal ◽  
Kai Ming Ting ◽  
zhen Liu ◽  
Bin He

Anomaly detection in hyperspectral image is affected by redundant bands and the limited utilization capacity of spectral-spatial information. In this article, we propose a novel Improved Isolation Forest (IIF) algorithm based on the assumption that anomaly pixels are more susceptible to isolation than the background pixels. The proposed IIF is a modified version of the Isolation Forest (iForest) algorithm, which addresses the poor performance of iForest in detecting local anomalies and anomaly detection in high-dimensional data. Further, we propose a spectral-spatial anomaly detector based on IIF (SSIIFD) to make full use of global and local information, as well as spectral and spatial information. To be specific, first, we apply the Gabor filter to extract spatial features, which are then employed as input to the Relative Mass Isolation Forest (ReMass-iForest) detector to obtain the spatial anomaly score. Next, original images are divided into several homogeneous regions via the Entropy Rate Segmentation (ERS) algorithm, and the preprocessed images are then employed as input to the proposed IIF detector to obtain the spectral anomaly score. Finally, we fuse the spatial and spectral anomaly scores by combining them linearly to predict anomaly pixels. The experimental results on four real hyperspectral data sets demonstrate that the proposed detector outperforms other state-of-the-art methods.


Author(s):  
Haoyi Zhou ◽  
Jun Zhou ◽  
Haichuan Yang ◽  
Cheng Yan ◽  
Xiao Bai ◽  
...  

Imaging devices are of increasing use in environmental research requiring an urgent need to deal with such issues as image data, feature matching over different dimensions. Among them, matching hyperspectral image with other types of images is challenging due to the high dimensional nature of hyperspectral data. This chapter addresses this problem by investigating structured support vector machines to construct and learn a graph-based model for each type of image. The graph model incorporates both low-level features and stable correspondences within images. The inherent characteristics are depicted by using a graph matching algorithm on extracted weighted graph models. The effectiveness of this method is demonstrated through experiments on matching hyperspectral images to RGB images, and hyperspectral images with different dimensions on images of natural objects.


Author(s):  
B. Saichandana ◽  
K. Srinivas ◽  
R. KiranKumar

<p>Hyperspectral remote sensors collect image data for a large number of narrow, adjacent spectral bands. Every pixel in hyperspectral image involves a continuous spectrum that is used to classify the objects with great detail and precision. This paper presents hyperspectral image classification mechanism using genetic algorithm with empirical mode decomposition and image fusion used in preprocessing stage. 2-D Empirical mode decomposition method is used to remove any noisy components in each band of the hyperspectral data. After filtering, image fusion is performed on the hyperspectral bands to selectively merge the maximum possible features from the source images to form a single image. This fused image is classified using genetic algorithm. Different indices, such as K-means (KMI), Davies-Bouldin Index (DBI), and Xie-Beni Index (XBI) are used as objective functions. This method increases classification accuracy of hyperspectral image.</p>


Author(s):  
R. Kiran Kumar ◽  
B. Saichandana ◽  
K. Srinivas

<p>This paper presents genetic algorithm based band selection and classification on hyperspectral image data set. Hyperspectral remote sensors collect image data for a large number of narrow, adjacent spectral bands. Every pixel in hyperspectral image involves a continuous spectrum that is used to classify the objects with great detail and precision. In this paper, first filtering based on 2-D Empirical mode decomposition method is used to remove any noisy components in each band of the hyperspectral data. After filtering, band selection is done using genetic algorithm in-order to remove bands that convey less information. This dimensionality reduction minimizes many requirements such as storage space, computational load, communication bandwidth etc which is imposed on the unsupervised classification algorithms. Next image fusion is performed on the selected hyperspectral bands to selectively merge the maximum possible features from the selected images to form a single image. This fused image is classified using genetic algorithm. Three different indices, such as K-means Index (KMI) and Jm measure are used as objective functions. This method increases classification accuracy and performance of hyperspectral image than without dimensionality reduction.</p>


2019 ◽  
Vol 11 (19) ◽  
pp. 2188
Author(s):  
Li ◽  
Zhu ◽  
Guo ◽  
Chen

Spectral unmixing of hyperspectral images is an important issue in the fields of remotesensing. Jointly exploring the spectral and spatial information embedded in the data is helpful toenhance the consistency between mixing/unmixing models and real scenarios. This paper proposesa graph regularized nonlinear unmixing method based on the recent multilinear mixing model(MLM). The MLM takes account of all orders of interactions between endmembers, and indicates thepixel-wise nonlinearity with a single probability parameter. By incorporating the Laplacian graphregularizers, the proposed method exploits the underlying manifold structure of the pixels’ spectra,in order to augment the estimations of both abundances and nonlinear probability parameters.Besides the spectrum-based regularizations, the sparsity of abundances is also incorporated for theproposed model. The resulting optimization problem is addressed by using the alternating directionmethod of multipliers (ADMM), yielding the so-called graph regularized MLM (G-MLM) algorithm.To implement the proposed method on large hypersepectral images in real world, we proposeto utilize a superpixel construction approach before unmixing, and then apply G-MLM on eachsuperpixel. The proposed methods achieve superior unmixing performances to state-of-the-artstrategies in terms of both abundances and probability parameters, on both synthetic and real datasets.


Sensor Review ◽  
2015 ◽  
Vol 35 (3) ◽  
pp. 274-281 ◽  
Author(s):  
Zhenfeng Shao ◽  
Weixun Zhou ◽  
Qimin Cheng ◽  
Chunyuan Diao ◽  
Lei Zhang

Purpose – The purpose of this paper is to improve the retrieval results of hyperspectral image by integrating both spectral and textural features. For this purpose, an improved multiscale opponent representation for hyperspectral texture is proposed to represent the spatial information of the hyperspectral scene. Design/methodology/approach – In the presented approach, end-member signatures are extracted as spectral features by means of the widely used end-member induction algorithm N-FINDR, and the improved multiscale opponent representation is extracted from the first three principal components of the hyperspectral data based on Gabor filters. Then, the combination similarity between query image and other images in the database is calculated, and the first k more similar images are returned in descending order of the combination similarity. Findings – Some experiments are calculated using the airborne hyperspectral data of Washington DC Mall. According to the experimental results, the proposed method improves the retrieval results, especially for image categories that have regular textural structures. Originality/value – The paper presents an effective retrieval method for hyperspectral images.


2019 ◽  
Vol 11 (24) ◽  
pp. 2897 ◽  
Author(s):  
Yuhui Zheng ◽  
Feiyang Wu ◽  
Hiuk Jae Shim ◽  
Le Sun

Hyperspectral unmixing is a key preprocessing technique for hyperspectral image analysis. To further improve the unmixing performance, in this paper, a nonlocal low-rank prior associated with spatial smoothness and spectral collaborative sparsity are integrated together for unmixing the hyperspectral data. The proposed method is based on a fact that hyperspectral images have self-similarity in nonlocal sense and smoothness in local sense. To explore the spatial self-similarity, nonlocal cubic patches are grouped together to compose a low-rank matrix. Then, based on the linear mixed model framework, the nuclear norm is constrained to the abundance matrix of these similar patches to enforce low-rank property. In addition, the local spatial information and spectral characteristic are also taken into account by introducing TV regularization and collaborative sparse terms, respectively. Finally, the results of the experiments on two simulated data sets and two real data sets show that the proposed algorithm produces better performance than other state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document