scholarly journals CoAR: Congestion-Aware Routing Protocol for Low Power and Lossy Networks for IoT Applications

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3838 ◽  
Author(s):  
Khadak Bhandari ◽  
A. Hosen ◽  
Gi Cho

The IPv6 routing protocol for low power and lossy networks (RPL) was designed to satisfy the requirements of a wide range of Internet of Things (IoT) applications, including industrial and environmental monitoring. In most scenarios, different from an ordinary environment, the industrial monitoring system under emergency scenarios needs to not only periodically collect the information from the sensing region, but also respond rapidly to some unusual situations. In the monitoring system, particularly when an event occurs in the sensing region, a surge of data generated by the sensors may lead to congestion at parent node as data packets converge towards the root. Congestion problem degrades the network performance that has an impact on quality of service. To resolve this problem, we propose a congestion-aware routing protocol (CoAR) which utilizes the selection of an alternative parent to alleviate the congestion in the network. The proposed mechanism uses a multi-criteria decision-making approach to select the best alternative parent node within the congestion by combining the multiple routing metrics. Moreover, the neighborhood index is used as the tie-breaking metric during the parent selection process when the routing score is equal. In order to determine the congestion, CoAR adopts the adaptive congestion detection mechanism based on the current queue occupancy and observation of present and past traffic trends. The proposed protocol has been tested and evaluated in different scenarios in comparison with ECRM and RPL. The simulation results show that CoAR is capable of dealing successfully with congestion in LLNs while preserving the required characteristics of the IoT applications.

2019 ◽  
Author(s):  
Vinícius De Figueiredo Marques ◽  
Janine Kniess

Low Power and Lossy Networks (LLNs) is a common type of wireless network in IoT applications. LLN communication patterns usually requires an efficient routing protocol. The IPv6 Routing Protocol for Low-Power and Lossy Network (RPL) is considered to be a possible standard routing protocol for LLNs. However, RPL was developed for static networks and node mobility decreases RPL overall performance. These are the purposes of the Mobility Aware RPL (MARPL), presented in this paper. MARPL provides a mobility detection mechanism based on neighbor variability. Performance evaluation results on the Cooja Simulator confirm the effectiveness of MARPL regarding link disconnection prevention, packet delivery rate and fast mobile node topology reconnection with low overhead impact when compared to other protocols.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877253 ◽  
Author(s):  
Sukho Oh ◽  
DongYeop Hwang ◽  
Kangseok Kim ◽  
Ki-Hyung Kim

An IPv6 routing protocol for low power and lossy networks provides an IPv6 communication for a wide range of applications in multi-hop mesh networks. The routing protocol for low power and lossy networks defines the creation and management of downward routes with two modes of operations: storing and non-storing modes. The storing and non-storing modes have weaknesses for memory constraints and packet traffic overheads, respectively. The storing mode may cause routing failures due to constraints on memory in routers and the non-storing mode may cause packet fragmentation that can become a factor for packet delays or loss. Then the problems may degrade the downward route performance in routing protocol for low power and lossy networks. Therefore, in this article, we propose a hybrid mode that combines the advantages of the existing two modes to improve the performance of downward packet transmission in routing protocol for low power and lossy networks networks. The proposed hybrid mode uses a new routing header format. The routing information for packet delivery is distributed with the extended routing header. We implement the proposed hybrid mode in Contiki OS environment to compare with existing techniques. From the experiment, it was observed that the proposed hybrid mode can improve the performance of downward packet transmission. Therefore, with the proposed hybrid mode, it is possible to configure a network enable to be composed of many leaf nodes with constrained memory. We also discuss future works.


2018 ◽  
Vol 11 (10) ◽  
pp. 51-65
Author(s):  
Abheyjeet Singh Chahal ◽  
Deepti Gupta ◽  
Ravreet Kaur

2017 ◽  
Vol 4 (6) ◽  
pp. 2172-2185 ◽  
Author(s):  
Xiyuan Liu ◽  
Zhengguo Sheng ◽  
Changchuan Yin ◽  
Falah Ali ◽  
Daniel Roggen

2021 ◽  
Author(s):  
Archana Bhat ◽  
Geetha V

Abstract IPv6 Routing Protocol for low power and lossy networks (RPL) is a standardized and default routing protocol for low power lossy networks. However, this is basically designed for sensor networks with scalar data and not optimised for the networks with multi-modal sensors. The data rate of each multi-modal sensor varies based on various applications. RPL suffers from packet drops and re-transmissions which results in packet loss and energy consumption in case of multi-modal data transmission. Hence, the routing strategy implemented in RPL needs better scheduling strategy at parent node for forwarding packets based on various parameters. In this paper, relevant Objective Functions for multi-modal sensor data communication is proposed based on various parameters identified and a weighted ranking based scheduling strategy is proposed for multi-modal data communication called R-RPL. The goal of proposed ranking based RPL (R-RPL) is to increase the throughput and reduce the loss in terms of energy and delay based on proposed scheduling strategy for parent selection. The performance of the proposed R-RPL is evaluated in the contiki based Cooja simulator and compared with RPL protocol. The analysis shows that the R-RPL performs better compared to RPL with respect to packet delivery ratio and energy consumption.


2020 ◽  
Vol 26 (11) ◽  
pp. 1366-1381
Author(s):  
Sathishkumar Natesan ◽  
Rajakumar Krishnan

The Routing Protocol for Low Power and Lossy Networks (RPL) is operated by gadgets comprised of many devices of embedded type with limited energy, memory as well as resources that do their process. The improvements in the life of the network and energy conservation are the key challenging features in Low Power and Lossy Networks (LLN). Obviously, the LLN has a key strategic part in routing. The Internet of Things (IoT) device is expected to make the apt choice. In LLN, the poor routing choice leads to traffic congestion, reduction in power as well as packet loss ratio. The task in the proposal analyzes Delay (D), Load (L) and Battery Discharge Index (BDI) pivoted Energy Efficient Composite Metric Routing (EECMR) protocol for LLN. The performance of the work in the proposal is evaluated by the COOJA simulator. It outperforms with respect to Network Lifetime (NL), Delay as well as Packet Delivery Ratio (PDR) contrasted to the routing metrics like Traffic Load (TL), Link Quality (LQ), Residual Energy (RE), RE-Battery Discharge Index (RE-BDI) and Hop Count (HC).


2021 ◽  
Author(s):  
Aryan Mohammadi Pasikhani ◽  
Andrew John Clark ◽  
Prosanta Gope

<p>The Routing Protocol for low power Lossy networks (RPL) is a critical operational component of low power wireless personal area networks using IPv6 (6LoWPANs). In this paper we propose a Reinforcement Learning (RL) based IDS to detect various attacks on RPL in 6LoWPANs, including several unaddressed by current research. The proposed scheme can also detect previously unseen attacks and the presence of mobile intruders. The scheme is well suited to the resource constrained environments of our target networks.</p><br>


Sign in / Sign up

Export Citation Format

Share Document