scholarly journals 3D SSY Estimate of EPFM Constraint Parameter under Biaxial Loading for Sensor Structure Design

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 735
Author(s):  
Ping Ding ◽  
Xin Wang

Conventional sensor structure design and related fracture mechanics analysis are based on the single J-integral parameter approach of elastic-plastic fracture mechanics (EPFM). Under low crack constraint cases, the EPFM one-parameter approach generally gives a stress overestimate, which results in a great cost waste of labor and sensor components. The J-A two-parameter approach overcomes this limitation. To enable the extensive application of the J-A approach on theoretical research and sensor engineering problem, under small scale yielding (SSY) conditions, the authors developed an estimate method to conveniently and quickly obtain the constraint (second) parameter A values directly from T-stress. Practical engineering application of sensor structure analysis and design focuses on three-dimensional (3D) structures with biaxial external loading, while the estimate method was developed based on two-dimensional (2D) plain strain condition with uniaxial loading. In the current work, the estimate method was successfully extended to a 3D structure with biaxial loading cases, which is appropriate for practical sensor design. The estimate method extension and validation process was implemented through a thin 3D single edge cracked plate (SECP) specimen. The process implementation was completed in two specified planes of 3D SECP along model thickness. A wide range of material and geometrical properties were applied for the extension and validation process, with material hardening exponent value 3, 5 and 10, and crack length ratio 0.1, 0.3 and 0.7.

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 717
Author(s):  
Ping Ding ◽  
Xin Wang

To implement a sensor structure analysis and design (as well as other engineering applications), a two-parameter approach using elastic–plastic fracture mechanics (EPFM) could be applied to analyze a structure more accurately than a one-parameter approach, especially for structures with low crack constraint. The application of the J-A two-parameter approach on sensors and other structures depends on the obtainment of a constraint parameter A. To conveniently and effectively obtain the A parameter values, the authors have developed a T-stress-based estimate method under a small-scale yielding (SSY) condition. Under a uniaxial external loading condition, a simplified format of the T-stress-based estimate has been proposed by the authors to obtain the parameter A much more conveniently and effectively. Generally, sensors and other practical engineering structures endure biaxial external loading instead of the uniaxial one. In the current work, the simplified formation of the estimate method is extended to a biaxial loading condition. By comparing the estimated A parameter values with their numerical solutions from a finite element analysis (FEA) results, the extension of the simplified formation of T-stress-based estimate method to biaxial loading was discussed and validated. The comparison procedure was completed using a wide variety of materials and geometrical properties on three types of specimens: single edge cracked plate (SECP), center cracked plate (CCP), and double edge cracked plate (DECP).


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
K. Ragupathy ◽  
K. Ramesh ◽  
D. Hall

The failure assessment diagram (FAD) is a simplified and robust flaw assessment methodology, which simultaneously connects two dominant failure criteria: linear elastic fracture mechanics on one end and plastic collapse on the other end. This interaction is in the realm of elastic-plastic fracture mechanics. It is popularly known as the R6 approach, which graphically characterizes the impact of plasticity on crack driving force. In recent years, there has been continuous interest in using FADs to assess the failure of cracked structures subjected to biaxial loadings. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack. Some pressure loaded aircraft components operate under negative biaxial ratios up to −0.5. In this paper, a detailed study on FAD was conducted using finite element analysis computed J-integral methods to investigate the effect of biaxial loading using different FAD approaches for geometries with notches. Geometries with a crack that emanates at a fillet region were simulated with various biaxial loading ratios from −0.5 to +0.5 using 2014-T6 material. FAD curves were numerically generated for cracks at notched regions subjected to various biaxial loadings using J-integral values from finite element analyses. These results were compared with standard FAD approaches. All comparison studies were made between uniaxial and biaxial loading cases with FAD curves created using four different crack sizes. Under small scale yielding, this study clearly shows that FAD curves are not influenced by negative biaxial loading at low load (up to 40% of yield strength). It was clearly confirmed that the majority of previously developed analytical FAD curves do not effectively account for notch and plasticity effects due to negative biaxiality. Based on this study, tension normal to the crack and compression parallel to the crack is the worst combination, and it has a very pronounced effect on FAD curve shapes. The standard analytical FAD curves are nonconservative compared with the approach recommended here, particularly under the worst case condition. FAD curves developed are shown to predict lower failure loads as compared with the currently accepted analytical FAD approaches defined in existing standards, e.g., R6 and API 579. The impact of negative biaxial loading can be investigated directly using a J-integral FAD approach but can be compared with ease by plotting both approaches in a FAD format.


Author(s):  
K. Ragupathy ◽  
K. Ramesh ◽  
Doug Hall

The Failure Assessment Diagram (FAD) is a simplified and robust flaw assessment methodology which simultaneously connects two dominant failure criteria: Linear Elastic Fracture mechanics (LEFM) on one end and Plastic collapse on other end. This interaction is the realm of Elastic Plastic Fracture Mechanics (EPFM.) It is popularly known as the R6 approach which graphically characterizes the impact of plasticity on crack driving force. In the recent years, there has been continuous interest in using Failure Assessment Diagrams (FAD) to assess the failure of cracked structures subjected to biaxial loadings. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack. Some aircraft components operate under negative biaxial ratios up to −0.5. In this paper, a detailed study on FAD was conducted using FEA computed J-integral methods to investigate the effect of biaxial loading using different FAD approaches for geometries with notches. Geometries with a crack that emanates at a fillet region were simulated with various biaxial loading ratios from −0.5 to +0.5 using 2014-T6 material. FAD curves were numerically generated for cracks at notched regions subjected to various biaxial loadings using J-integral values from finite element analyses and validated its practical application. Comparison studies were made between uniaxial and biaxial loading cases with FAD curves created using standard approaches for four different crack sizes. Under small scale yielding, this study clearly shows that FAD curves are not influenced by negative biaxial loading at low load (up to 40% of yield strength). It was clearly confirmed that the majority of previously developed analytical FAD curves do not effectively account for notch and plasticity effects due to negative biaxilaity. Based on this study, tension normal to the crack and compression parallel to the crack is the worst combination and it has a very pronounced effect on FAD curve shapes. The standard analytical FAD curves are non-conservative compared to the approach recommended here, particularly under the worst case condition. The proposed method is expected to predict lower failure loads relative to currently accepted analytical methods.


2014 ◽  
Vol 590 ◽  
pp. 604-608
Author(s):  
Tian Li Li ◽  
Jiang Wang ◽  
Gang Xu ◽  
Li Cun Fang

It's not easy to achieve high-precision and wide range for the SAW temperature sensor. The multi-reflector reuse method is proposed in this paper based on the SAW delay-line theory. A pair of RF pulse query signals with difference query width are sent sequentially to the novel SAW sensor in a query period, the phase different of the RF pulse echo signal is analyzed based on the position factor. The novel method is used in the SAW sensor design, the SAW sensor can achieve the high accuracy and the well range at the same time.


Author(s):  
Xin Wang

In this paper, the J-Q two-parameter elastic-plastic fracture mechanics approach is used to analyse the surface cracked plates under uniaxial and biaxial loading. First, the J-Q characterization of crack front stress fields of surface cracked plates under uniaxial and biaxial tension loadings are discussed. The complete J-Q trajectories for points along the crack fronts as load increases from small-scale yielding to large-scale yielding were obtained. Based on the materials toughness locus, (resistance to fracture JC as a function of Q), the assessments of the onset of cleavage fracture are conducted. The critical location along the 3D crack front, and the corresponding maximum load carrying capacity are obtained. The results are consistent with experimental observations. It is demonstrated the J-Q two-parameter approach is capable of providing comprehensive assessments of cleavage fracture of surface cracked plates under uniaxial/biaxial loadings, capturing all the important aspects of the problem.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1687
Author(s):  
Håkon Eidsvåg ◽  
Said Bentouba ◽  
Ponniah Vajeeston ◽  
Shivatharsiny Yohi ◽  
Dhayalan Velauthapillai

Hydrogen produced from water using photocatalysts driven by sunlight is a sustainable way to overcome the intermittency issues of solar power and provide a green alternative to fossil fuels. TiO2 has been used as a photocatalyst since the 1970s due to its low cost, earth abundance, and stability. There has been a wide range of research activities in order to enhance the use of TiO2 as a photocatalyst using dopants, modifying the surface, or depositing noble metals. However, the issues such as wide bandgap, high electron-hole recombination time, and a large overpotential for the hydrogen evolution reaction (HER) persist as a challenge. Here, we review state-of-the-art experimental and theoretical research on TiO2 based photocatalysts and identify challenges that have to be focused on to drive the field further. We conclude with a discussion of four challenges for TiO2 photocatalysts—non-standardized presentation of results, bandgap in the ultraviolet (UV) region, lack of collaboration between experimental and theoretical work, and lack of large/small scale production facilities. We also highlight the importance of combining computational modeling with experimental work to make further advances in this exciting field.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1022
Author(s):  
Rashid G. Bikbaev ◽  
Ivan V. Timofeev ◽  
Vasiliy F. Shabanov

Optical sensing is one of many promising applications for all-dielectric photonic materials. Herein, we present an analytical and numerical study on the strain-responsive spectral properties of a bioinspired sensor. The sensor structure contains a two-dimensional periodic array of dielectric nanodisks to mimic the optical behavior of grana lamellae inside chloroplasts. To accumulate a noticeable response, we exploit the collective optical mode in grana ensemble. In higher plants, such a mode appears as Wood’s anomaly near the chlorophyll absorption line to control the photosynthesis rate. The resonance is shown persistent against moderate biological disorder and deformation. Under the stretching or compression of a symmetric structure, the mode splits into a couple of polarized modes. The frequency difference is accurately detected. It depends on the stretch coefficient almost linearly providing easy calibration of the strain-sensing device. The sensitivity of the considered structure remains at 5 nm/% in a wide range of strain. The influence of the stretching coefficient on the length of the reciprocal lattice vectors, as well as on the angle between them, is taken into account. This adaptive phenomenon is suggested for sensing applications in biomimetic optical nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document