scholarly journals Adaptive Node Clustering Technique for Smart Ocean Under Water Sensor Network (SOSNET)

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1145 ◽  
Author(s):  
Mehr Yahya Durrani ◽  
Rehan Tariq ◽  
Farhan Aadil ◽  
Muazzam Maqsood ◽  
Yunyoung Nam ◽  
...  

Abstract: Smart ocean is a term broadly used for monitoring the ocean surface, sea habitat monitoring, and mineral exploration to name a few. Development of an efficient routing protocol for smart oceans is a non-trivial task because of various challenges, such as presence of tidal waves, multiple sources of noise, high propagation delay, and low bandwidth. In this paper, we have proposed a routing protocol named adaptive node clustering technique for smart ocean underwater sensor network (SOSNET). SOSNET employs a moth flame optimizer (MFO) based technique for selecting a near optimal number of clusters required for routing. MFO is a bio inspired optimization technique, which takes into account the movement of moths towards light. The SOSNET algorithm is compared with other bio inspired algorithms such as comprehensive learning particle swarm optimization (CLPSO), ant colony optimization (ACO), and gray wolf optimization (GWO). All these algorithms are used for routing optimization. The performance metrics used for this comparison are transmission range of nodes, node density, and grid size. These parameters are varied during the simulation, and the results indicate that SOSNET performed better than other algorithms.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4514
Author(s):  
Muhammad Fahad Khan ◽  
Muqaddas Bibi ◽  
Farhan Aadil ◽  
Jong-Weon Lee

Monitoring of an underwater environment and communication is essential for many applications, such as sea habitat monitoring, offshore investigation and mineral exploration, but due to underwater current, low bandwidth, high water pressure, propagation delay and error probability, underwater communication is challenging. In this paper, we proposed a sensor node clustering technique for UWSNs named as adaptive node clustering technique (ANC-UWSNs). It uses a dragonfly optimization (DFO) algorithm for selecting ideal measure of clusters needed for routing. The DFO algorithm is inspired by the swarming behavior of dragons. The proposed methodology correlates with other algorithms, for example the ant colony optimizer (ACO), comprehensive learning particle swarm optimizer (CLPSO), gray wolf optimizer (GWO) and moth flame optimizer (MFO). Grid size, transmission range and nodes density are used in a performance matrix, which varies during simulation. Results show that DFO outperform the other algorithms. It produces a higher optimized number of clusters as compared to other algorithms and hence optimizes overall routing and increases the life span of a network.


2020 ◽  
Vol 18 (5) ◽  
pp. 379-388
Author(s):  
N. Hemavathy ◽  
S. Sudha ◽  
K. Ramesh

Recently, underwater wireless sensor networks (UWSNs) have emerged as a promising networking technique for various underwater applications. An energy efficient routing protocol plays a vital role in data transmission and practical applications. However, due to the specific characteristics of UWSNs, such as dynamic structure, narrow bandwidth, rapid energy consumption, and high latency, it is difficult to build routing protocols for UWSNs. In this paper, We propose a location aware opportunistic routing algorithm for under water communication. We analyse three main problems in under water communication; forwarding set selection forwarding set ranking to handle FSR problem, void handling method to handle the communication void (CV) and overhear and suppression procedure to deal with duplicate forwarding suppression (DFS) problems. The importance of the work is that it will provide an energy efficient pressure based opportunistic routing algorithm for wireless sensor network (UWSN). The routing protocol has been implemented in the ns2-AqaSim simulator and testbed for measurement of the performance metrics of the UASN. The simulation results showed that the novel routing method throughput has increased by 16%, 33%, and 55% when compared with SUN, VBF and DF method. It can effectively improve the throughput of nodes, balance positioning performance as well as energy use efficiency, and optimize the positioning result of UWASN.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1021
Author(s):  
Zhanserik Nurlan ◽  
Tamara Zhukabayeva ◽  
Mohamed Othman

Wireless sensor networks (WSN) are networks of thousands of nodes installed in a defined physical environment to sense and monitor its state condition. The viability of such a network is directly dependent and limited by the power of batteries supplying the nodes of these networks, which represents a disadvantage of such a network. To improve and extend the life of WSNs, scientists around the world regularly develop various routing protocols that minimize and optimize the energy consumption of sensor network nodes. This article, introduces a new heterogeneous-aware routing protocol well known as Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network or EZ-SEP, where the connection of nodes to a base station (BS) is done via a hybrid method, i.e., a certain amount of nodes communicate with the base station directly, while the remaining ones form a cluster to transfer data. Parameters of the field are unknown, and the field is partitioned into zones depending on the node energy. We reviewed the Z-SEP protocol concerning the election of the cluster head (CH) and its communication with BS and presented a novel extended mechanism for the selection of the CH based on remaining residual energy. In addition, EZ-SEP is weighted up using various estimation schemes such as base station repositioning, altering the field density, and variable nodes energy for comparison with the previous parent algorithm. EZ-SEP was executed and compared to routing protocols such as Z-SEP, SEP, and LEACH. The proposed algorithm performed using the MATLAB R2016b simulator. Simulation results show that our proposed extended version performs better than Z-SEP in the stability period due to an increase in the number of active nodes by 48%, in efficiency of network by the high packet delivery coefficient by 16% and optimizes the average power consumption compared to by 34.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1179
Author(s):  
Carolina Del-Valle-Soto ◽  
Carlos Mex-Perera ◽  
Juan Arturo Nolazco-Flores ◽  
Alma Rodríguez ◽  
Julio C. Rosas-Caro ◽  
...  

Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.


Sign in / Sign up

Export Citation Format

Share Document