scholarly journals EZ-SEP: Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1021
Author(s):  
Zhanserik Nurlan ◽  
Tamara Zhukabayeva ◽  
Mohamed Othman

Wireless sensor networks (WSN) are networks of thousands of nodes installed in a defined physical environment to sense and monitor its state condition. The viability of such a network is directly dependent and limited by the power of batteries supplying the nodes of these networks, which represents a disadvantage of such a network. To improve and extend the life of WSNs, scientists around the world regularly develop various routing protocols that minimize and optimize the energy consumption of sensor network nodes. This article, introduces a new heterogeneous-aware routing protocol well known as Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network or EZ-SEP, where the connection of nodes to a base station (BS) is done via a hybrid method, i.e., a certain amount of nodes communicate with the base station directly, while the remaining ones form a cluster to transfer data. Parameters of the field are unknown, and the field is partitioned into zones depending on the node energy. We reviewed the Z-SEP protocol concerning the election of the cluster head (CH) and its communication with BS and presented a novel extended mechanism for the selection of the CH based on remaining residual energy. In addition, EZ-SEP is weighted up using various estimation schemes such as base station repositioning, altering the field density, and variable nodes energy for comparison with the previous parent algorithm. EZ-SEP was executed and compared to routing protocols such as Z-SEP, SEP, and LEACH. The proposed algorithm performed using the MATLAB R2016b simulator. Simulation results show that our proposed extended version performs better than Z-SEP in the stability period due to an increase in the number of active nodes by 48%, in efficiency of network by the high packet delivery coefficient by 16% and optimizes the average power consumption compared to by 34.

2016 ◽  
Vol 15 (14) ◽  
pp. 7406-7415
Author(s):  
Muhammad Rizwan ◽  
Muhammad S. Nisar ◽  
Hongbo Jiang

Energy preservation is one of the most important research challenges in Wireless Senor Networks (WSNs). In recent research, topologies and architectures have investigated that allow energy efficiency in WSNs. Clustering is one of the most famous energy efficient techniques. In clustering, the selection of cluster head (CH) and short distance multi-hop energy efficient communication between CH and base station (BS) plays a vital role in order to achieve the desired energy efficiency in the sensor network. In this energy saving solution, we purpose and combine the idea of fuzzy logic based CH selection and multihop short distance communication between CH and base station in order to prolong the stable period and life span of network. Our proposed routing protocol, Fuzzy Logic based Multihop Energy Efficient Routing Protocol (FMEEP) for Heterogeneous WSN, which uses fuzzy logic inference system (FIS) in order to select a qualified CH in the cluster formation process and minimizes the overall energy dissipation in the sensor network. The simulation results have shown that purposed routing scheme outperforms in terms of stability period and network lifetime as compared to previous routing protocols. 


Author(s):  
Buwen Cao ◽  
Shuguang Deng ◽  
Hua Qin ◽  
Yue Tan

AbstractThe distributed clustering method is widely used to extend network lifetime in traditional wireless sensor networks. However, it is difficult to achieve the idea performance of the whole network, such as transmission rate, energy consumption, and control overhead, neglecting the global stability of the network. To tackle this problem, a centralized mobility-based clustering (CMBC) protocol is proposed in the software defined sensor network. The method of CMBC mainly consists of two aspects: first, CMBC clusters the nodes with the connection time between the mobile nodes (i.e., noncluster head nodes, non-CH) and the cluster head (CH) and establishes stable topological structures between the non-CHs and the CH; second, when emergencies occur, the centralization management control center sends the configuration files to replace the CH. Compared to the distributed network of MBC, WCRA and IMP-MECA protocol, the proposed method can be applied in scenarios with high-speed mobile nodes to improve the network performance in terms of transmission successful rate, average power consumption, and average control overhead.


2019 ◽  
Vol 12 (1) ◽  
pp. 03-07 ◽  
Author(s):  
DIMITRIS KANELLOPOULOS

A wireless sensor network (WSN) can be employed in many application areas such as traffic control and industrial automation. In WSNs, clustering achieves energy efficiency and scalable performance. A cluster is formed by several sensors nodes, and one of them is elected as cluster-head (CH). A CH collects information from the cluster members and sends aggregated sensed data to the base station (BS) or another CH. The main task of a routing protocol in a WSN is to forward these sensed data to the BS. This paper analyses the advantages of cluster-based routing protocols vs. flat routing protocols in WSNs.


Author(s):  
Meriem Boumassata ◽  
Mohamed Benmohammed

Wireless sensor networks (WSNs) are networks formed by a large number of electronic devices called sensor nodes, where each node is capable of measuring environmental or physical values and communicating data, through wireless links, to a base station. The main problem that WSNs routing protocols face, is that sensors are powered with low power batteries, which plays an important role in network lifetime. Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical cluster based routing protocol that was proposed as a solution for low power consumption in WSNs. One of LEACH protocol limitations is “Extra Transmissions”. This paper studies LEACH protocol, some of its various enhancements and finally proposes a new clustering and selecting cluster head scheme with the goal of optimizing the energy consumption in WSNs.


2013 ◽  
Vol 273 ◽  
pp. 519-523
Author(s):  
Zhi Ping Liu

Based on the characteristics of WSNs different from traditional networks, this thesis analyzes the heterogeneous sensor network. Based on state of the cluster head, the base station (BS) adjusts the routing table and transmission power of the cluster head to balance the node energy consumption. Extensive simulation experiments are performed and the results show that the proposed scheme has advantage in network lifetime and energy consumption.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Hardeep S. Saini ◽  
Dinesh Arora

Background & Objective: The operating efficiency of a sensor network totally relies upon the energy that is consumed by the nodes to perform various tasks like data transmission etc. Thus, it becomes mandatory to consume the energy in an intelligent way so that the network can run for a long period. This paper proposed an energy efficient Cluster Head (CH) selection mechanism by considering the distance to Base Station (BS), distance to node and energy as major factors. The concept of volunteer node is also introduced with an objective to reduce the energy consumption of the CH to transmit data from source to BS. The role of the volunteer node is to transmit the data successfully from source to destination or BS. Conclusion: The results are observed with respect to the Alive nodes, dead nodes and energy consumption of the network. The outcome of the proposed work proves that it outperforms the traditional mechanisms.


Author(s):  
Pawan Singh Mehra

AbstractWith huge cheap micro-sensing devices deployed, wireless sensor network (WSN) gathers information from the region and delivers it to the base station (BS) for further decision. The hotspot problem occurs when cluster head (CH) nearer to BS may die prematurely due to uneven energy depletion resulting in partitioning the network. To overcome the issue of hotspot or energy hole, unequal clustering is used where variable size clusters are formed. Motivated from the aforesaid discussion, we propose an enhanced fuzzy unequal clustering and routing protocol (E-FUCA) where vital parameters are considered during CH candidate selection, and intelligent decision using fuzzy logic (FL) is taken by non-CH nodes during the selection of their CH for the formation of clusters. To further extend the lifetime, we have used FL for the next-hop choice for efficient routing. We have conducted the simulation experiments for four scenarios and compared the propound protocol’s performance with recent similar protocols. The experimental results validate the improved performance of E-FUCA with its comparative in respect of better lifetime, protracted stability period, and enhanced average energy.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


Sign in / Sign up

Export Citation Format

Share Document