scholarly journals An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1189 ◽  
Author(s):  
Yongyuan Liang ◽  
Mingsheng Ma ◽  
Faqiang Zhang ◽  
Feng Liu ◽  
Zhifu Liu ◽  
...  

This work reports a novel wireless microfluidic biosensor based on low temperature co-fired ceramic (LTCC) technology. The wireless biosensor consists of a planar spiral inductor and parallel plate capacitor (LC) resonant antenna, which integrates with microchannel bends in the LTCC substrate. The wireless response of the biosensor was associated to the changes of its resonant frequency due to the alteration in the permittivity of the liquid flow in the microchannel. The wireless sensing performance to different organic liquids with permittivity from 3 to 78.5 was presented. The measured results are in good agreement with the theoretical calculation. The wireless detection for the concentration of glucose in water solution was investigated, and an excellent linear response and repeatability were obtained. This kind of LC wireless microfluidic sensor is very promising in establishing wireless lab-on-a-chip for biomedical and chemical applications.

2020 ◽  
Vol 8 (32) ◽  
pp. 16661-16668
Author(s):  
Huayao Tu ◽  
Shouzhi Wang ◽  
Hehe Jiang ◽  
Zhenyan Liang ◽  
Dong Shi ◽  
...  

The carbon fiber/metal oxide/metal oxynitride layer sandwich structure is constructed in the electrode to form a mini-plate capacitor. High dielectric constant metal oxides act as dielectric to increase their capacitance.


2004 ◽  
Vol 42 (4) ◽  
pp. 250-250
Author(s):  
Wojciech Dindorf

1997 ◽  
Vol 12 (10) ◽  
pp. 2743-2750 ◽  
Author(s):  
Jau-Ho Jean ◽  
Chia-Ruey Chang

Camber (curvature) development during cofiring a two-layered structure of Ag film/low-dielectric-constant, low-temperature cofired ceramic (LTCC) green tape has been investigated. At a given thickness of Ag film, both the camber and camber rate decrease linearly with increasing the square thickness of LTCC. Densification mismatch between Ag and LTCC is attributed to be the root cause for the camber generation during cofiring. Mathematical analysis is made to theoretically describe the camber development, and the results show a fairly good agreement with experimental observations.


2003 ◽  
Vol 785 ◽  
Author(s):  
C. Bielmeier ◽  
W. Walter

ABSTRACTThe development of lightweight low power consumption actuators is critical to the development of micro-robotics. Electroactive Polymers (EAP), i.e. Nafion N-117, meet these requirements. In the actuation of an EAP, the current does not remain constant over time. The development of a circuit model of current draw over time to best predict a current dynamic has been explored. While the material mimics a parallel plate capacitor, it has been found that capacitance plays no role in achieving steady state current levels. This development is critical to understanding and developing the material as an actuator.


2014 ◽  
Vol 556-562 ◽  
pp. 64-66
Author(s):  
Chun Yan Zhang ◽  
Chuan Tao Wang ◽  
Shu Hao Wang ◽  
Ling Yun Du

ZnS semiconductor nanocrystals (NCs) were prepared by ways from primary materials of ZnCl2 and Na2S in water solution. Using the synthesized ZnS NCs, a polyclonal antibody-based ZnS-labelled immunosorbent assay for the determination of estriol (E3) was developed with atomic absorption spectrophotometry (AAS) as a detector. An immunoaffinity column was applied to testify conjugation between antibody and ZnS NCs. The linear range for determination of estriol is 40.0~600.0 ng.mL-1, and the limit of detection (LOD) is 10.0 ng.mL-1. Some serum samples have been analyzed with satisfactory results which are in good agreement with those obtained using ELISA. This work suggests the potential application of NCs as biological probes and AAS as detector in nonisotopic immunoassay.


Sign in / Sign up

Export Citation Format

Share Document