Camber development during cofiring Ag-based low-dielectric-constant ceramic package

1997 ◽  
Vol 12 (10) ◽  
pp. 2743-2750 ◽  
Author(s):  
Jau-Ho Jean ◽  
Chia-Ruey Chang

Camber (curvature) development during cofiring a two-layered structure of Ag film/low-dielectric-constant, low-temperature cofired ceramic (LTCC) green tape has been investigated. At a given thickness of Ag film, both the camber and camber rate decrease linearly with increasing the square thickness of LTCC. Densification mismatch between Ag and LTCC is attributed to be the root cause for the camber generation during cofiring. Mathematical analysis is made to theoretically describe the camber development, and the results show a fairly good agreement with experimental observations.

2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


2019 ◽  
Vol 304 (12) ◽  
pp. 1900505 ◽  
Author(s):  
Chao Huang ◽  
Jinhui Li ◽  
Guangxia Xie ◽  
Fei Han ◽  
Dongxu Huang ◽  
...  

2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000105-000111
Author(s):  
Ellen Tormey ◽  
Chao Ma ◽  
John Maloney ◽  
Bradford Smith ◽  
Sid Sridharan ◽  
...  

Abstract Low dielectric constant/low loss LTCC materials have drawn much attention with the emergence of 5G wireless telecommunications. LTCC offers unique properties in the millimeter wave frequency range. The low dielectric constant and dielectric loss enable low latency devices with enhanced performance. To meet the market demands of higher performance and lower cost, Ferro has developed a new M7 LTCC/Ag cofireable system suitable for antenna in 5G and other high frequency applications. M7 LTCC ceramic green tape and cofireable Ag conductors have been developed and tested. Properties of the LTCC/Ag system are included herein including high frequency dielectric properties.


1999 ◽  
Vol 579 ◽  
Author(s):  
A. Demkov ◽  
R. Liu ◽  
S. Zollner ◽  
D. Werho ◽  
M. Kottke ◽  
...  

ABSTRACTFluorinated silica has a dielectric constant E in the range of 3—3.5, lower than that of F-free SiO2 (ω=4). The reasons behind this reduction are controversial. It is not known whether the electronic or ionic contributions to the overall screening are being diminished upon F doping. To shed more light on this phenomenon we have studied F-doped SiO2 with ab-initio modeling and various characterization techniques. FTIR transmission and spectroscopic ellipsometry give us information about the ionic and electronic contributions to ω Nuclear reaction analysis and Auger spectrometry measure F composition. XPS and FTIR provide information on the atomic structure and stability of the film. We use a large cell of cristobalite to model fluorinated silica theoretically. The ground state geometry is obtained via energy minimization. We calculate the vibrational density of states and find a localized mode (Si-F stretch), in good agreement with FTIR transmission. We analyze the effects of F incorporation on the dielectric properties.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000544-000552
Author(s):  
Deepukumar M. Nair ◽  
James Parisi ◽  
K.M. Nair ◽  
Mark McCombs ◽  
Michael Smith ◽  
...  

Low Temperature Co-fired Ceramic (LTCC) material systems have been successfully used in microwave and millimeter wave systems for several years. LTCC has very low dielectric loss, high reliability due to inherent hermeticity; high interconnect density, multilayer processing capability leading to true 3D packaging, and better cost-performance balance. While the medium range dielectric constants (7.00 – 8.00) offered by current tape systems have advantages, it is generally difficult to realize high speed systems and efficient antennas on LTCC, especially at millimeter wave frequencies. The difficulty arises from the reduced signal propagation velocity in high-speed applications, and lower radiation efficiency for antennas, both due to higher dielectric constant. To enable and extend applications of LTCC technology to these subsystems, DuPont has developed a new low dielectric constant LTCC system – DuPont™ GreenTape™ 9K5 - which has a dielectric constant of 5.80 (at 10 GHz) that is compatible with the commercial DuPont™ GreenTape™ 9K7 LTCC System. This is achieved without compromising excellent microwave loss properties of the 9KX GreenTape™ platform. These materials systems enable high-speed, high reliability applications while also realizing efficient antennas on LTCC. This paper presents initial characterization of the new DuPont™ GreenTape™ 9K5 LTCC system consisting of low K dielectric tape, gold and silver conductors to evaluate the effects of chemistry, processing conditions, processing latitude, microstructure, and microwave performance. Test coupons with various transmission and resonating structures are designed, fabricated, and tested for the evaluation of transmission losses and dielectric properties. Stability of the material system over multiple re-fire steps is also examined


2014 ◽  
Vol 602-603 ◽  
pp. 748-751 ◽  
Author(s):  
Xin Hui Zhao ◽  
Min Jia Wang ◽  
Qi Long Zhang ◽  
Hui Yang

(Ca0.9Mg0.1)SiO3ceramics possess a low dielectric constant and a highQfvalue, however, the densification temperature of (Ca0.9Mg0.1)SiO3ceramics is higher than 1280°C. In this paper, the effect of Li2CO3addition on sinterability and dielectric properties of (Ca0.9Mg0.1)SiO3ceramics were studied. The phase presence and surface morphology were determined by XRD and SEM techniques, respectively. CaSiO3and Ca2MgSi2O7phases were observed. With the addition of >2.0 wt% Li2CO3, the sintering temperature of (Ca0.9Mg0.1)SiO3ceramic was significantly lowered, reaching to 1070°C. (Ca0.9Mg0.1)SiO3ceramics with 4wt% Li2CO3sintered at 1070°C for 3 h shows excellent dielectric properties:εr=5.91,Qf= 15300GHz (at 10GHz).


1996 ◽  
Vol 11 (8) ◽  
pp. 2098-2103 ◽  
Author(s):  
Jau-Ho Jean

The constant-stress compressive creep behavior of a low-dielectric constant (low-k) glass composite, containing a low-softening-point borosilicate glass (BSG) and a high-softening-point high silica glass (HSG), has been investigated at 800–950 °C. For all stages of creep, the deformation behavior exhibits linear viscoelasticity, and is controlled by viscous flow of the low-softening-point borosilicate glass. An analytical expression is proposed to describe mathematically the creep behavior of the glass composite, and the results show a fairly good agreement with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document