scholarly journals Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1481 ◽  
Author(s):  
Hang Qi ◽  
Fang Huang ◽  
Huan Zhai

Soil water use efficiency (SWUE) was proposed as an effective proxy of ecosystem water use efficiency (WUE), which reflects the coupling of the carbon–water cycle and function of terrestrial ecosystems. The changes of ecosystem SWUE at the regional scale and their relationships with the environmental and biotic factors are yet to be adequately understood. Here, we aim to estimate SWUE over northeast China using time-series Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary productivity data and European Space Agency climate change initiative (ESA CCI) soil moisture product during 2007–2015. The spatio-temporal variations in SWUE and their linkages to multiple factors, especially the phenological metrics, were investigated using trend and correlation analysis. The results showed that the spatial heterogeneity of ecosystem SWUE in northeast China was obvious. SWUE distribution varied among vegetation types, soil types, and elevation. Forests might produce higher photosynthetic productivity by utilizing unit soil moisture. The seasonal variations of SWUE were consistent with the vegetation growth cycle. Changes in normalized difference vegetation index (NDVI), land surface temperature, and precipitation exerted positive effects on SWUE variations. The earlier start (SOS) and later end (EOS) of the growing season would contribute to the increase in SWUE. Our results help complement the knowledge of SWUE variations and their driving forces.

Weed Science ◽  
1991 ◽  
Vol 39 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Richard K. Zollinger ◽  
James J. Kells

Growth of perennial sowthistle was examined under different levels of soil pH, soil moisture content, light intensity, and temperature. Soil pH ranging from 5.2 to 7.2 had little effect on the number of leaves, rosette diameter, plant height, and number of capitula. However, total dry weight was 30% less in plants grown in soil of pH 5.2 compared to those grown at higher soil pH levels. Perennial sowthistle demonstrated a consistent positive growth response to increasing soil water including saturation. Severe reduction in vegetative and reproductive growth occurred in plants grown in soil below field capacity. Plants grown under full light (1015 μE m−2s−1photosynthetic photon flux density) developed a fourfold increase in the number of capitula per plant and a 50% increase in total dry weight compared to plants grown at 285 μE m−2s−1. Initiation of reproduction was delayed 4 weeks for plants grown at 580 μE m−2s−1and 285 μE m−2s−1. Plants grown under less than full light developed fewer but larger leaves. Plants grown under a day/night temperature of 20/15 C grew more rapidly than those under 30/25 C or 10/5 C. Plants at 30/25 C began to senesce 7 to 8 weeks after planting. Net carbon assimilation, leaf conductance, transpiration, and water use efficiency decreased as soil moisture and light intensity decreased. Plants at 30/25 C had the highest rate of transpiration and the lowest water use efficiency. The observed optimum for perennial sowthistle growth occurred at a soil pH of 6.2 or 7.2, water-saturated soil, high light intensity, and a temperature of 20/15 C, day/night.


2012 ◽  
Vol 622-623 ◽  
pp. 1725-1729
Author(s):  
Jian Guo Shi ◽  
Jing Hui Liu ◽  
Li Xin Jia ◽  
Bao Ping Zhao ◽  
Li Jun Li ◽  
...  

Aiming at reducing agricultural pollution caused by plastic film and increasing soil moisture and water use efficiency (WUE), the field experiments were conducted to investigate the effects of re-used plastic film mulching on soil moisture, sunflower’s yield and water use efficiency by compared with new plastic film mulching and bare field in Hetao area, China. The results showed that, soil water of re-used film mulching increased at different degree. Compared with bare field and new film mulching, soi1 moisture of re-used film were higher significantly 1.5 percentage points in 0-100 cm, and especially 1.9 or 2.6 percentage points in 0-10 cm during sunflower’s growth stage. Soil water of re-used film was more than that of bare field 24.8 mm (in 2010) and 33.0 mm (in 2011) before seeding, and 21.6mm (in 2010) and 24.5mm (in 2011) at harvest when soil water was replenished to same level for each treatment before sowing. Meanwhile, the grain yield of re-used film was higher significantly than that of bare field 11.4% (in 2010) and 16.8% (in 2011), and WUE of re-used film was higher significantly 15.7% (in 2010) and 22.7% (in 2011) respectively, no significant with new film. So it was worth to apply re-used film to agriculture production for improving the soil moisture, enhancing water use efficiency and increasing the yield of sunflower. We suggest that the application of re-used film mulching is a suitable soil management practice for increase water and WUE in Hetao area or other areas with similar conditions.


Author(s):  
s. Chang ◽  
F. Huang ◽  
B. Li ◽  
H. Qi ◽  
H. Zhai

Water use efficiency is known as an important indicator of carbon and water cycle and reflects the transformation capacity of vegetation water and nutrients into biomass. In this study, we presented a new indicator of water use efficiency, soil water use level (SWUL), derived from satellite remote sensing based gross primary production and the Visible and Shortwave Infrared Drought Index (VSDI). SWUL based on MODIS data was calculated for the growing season of 2014 in Northeast China, and the spatial pattern and the variation trend were analyzed. Results showed that the highest SWUL was observed in forestland with the value of 36.65. In cropland and grassland, the average SWUL were 26.18 and 29.29, respectively. SWUL showed an increased trend in the first half period of the growing season and peaked around the 200th day. After the 220th day, SWUL presented a decreasing trend. Compared to the soil water use efficiency (SWUE), SWUL might depict the water use status at finer spatial resolution. The new indicator SWUL can help promote understanding the water use efficiency for regions of higher spatial heterogeneity.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 75
Author(s):  
Victor Hugo Ramírez-Builes ◽  
Jürgen Küsters

Coffee (Coffea spp.) represents one of the most important sources of income and goods for the agricultural sector in Central America, Colombia, and the Caribbean region. The sustainability of coffee production at the global and regional scale is under threat by climate change, with a major risk of losing near to 50% of today’s suitable area for coffee by 2050. Rain-fed coffee production dominates in the region, and under increasing climate variability and climate change impacts, these production areas are under threat due to air temperature increase and changes in rainfall patterns and volumes. Identification, evaluation, and implementation of adaptation strategies for growers to cope with climate variability and change impacts are relevant and high priority. Incremental adaptation strategies, including proper soil and water management, contribute to improved water use efficiency (WUE) and should be the first line of action to adapt the coffee crop to the changing growing conditions. This research’s objective was to evaluate at field level over five years the influence of fertilization with calcium (Ca+2) and potassium (K+) on WUE in two coffee arabica varieties: cv. Castillo and cv. Caturra. Castillo has resistance against coffee leaf rust (CLR) (Hemileia vastatrix Verkeley and Brome), while Caturra is not CLR-resistant. WUE was influenced by yield changes during the years by climate variability due to El Niño–ENSO conditions and CLR incidence. Application of Ca+2 and K+ improved the WUE under such variable conditions. The highest WUE values were obtained with an application of 100 kg CaO ha−1 year−1 and between 180 to 230 kg K2O ha−1 year−1. The results indicate that adequate nutrition with Ca+2 and K+ can improve WUE in the long-term, even underwater deficit conditions and after the substantial incidence. Hence, an optimum application of Ca+2 and K+ in rain-fed coffee plantations can be regarded as an effective strategy to adapt to climate variability and climate change.


2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


Sign in / Sign up

Export Citation Format

Share Document