scholarly journals Narrowband Internet of Things (NB-IoT): From Physical (PHY) and Media Access Control (MAC) Layers Perspectives

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2613 ◽  
Author(s):  
Collins Burton Mwakwata ◽  
Hassan Malik ◽  
Muhammad Mahtab Alam ◽  
Yannick Le Moullec ◽  
Sven Parand ◽  
...  

Narrowband internet of things (NB-IoT) is a recent cellular radio access technology based on Long-Term Evolution (LTE) introduced by Third-Generation Partnership Project (3GPP) for Low-Power Wide-Area Networks (LPWAN). The main aim of NB-IoT is to support massive machine-type communication (mMTC) and enable low-power, low-cost, and low-data-rate communication. NB-IoT is based on LTE design with some changes to meet the mMTC requirements. For example, in the physical (PHY) layer only single-antenna and low-order modulations are supported, and in the Medium Access Control (MAC) layers only one physical resource block is allocated for resource scheduling. The aim of this survey is to provide a comprehensive overview of the design changes brought in the NB-IoT standardization along with the detailed research developments from the perspectives of Physical and MAC layers. The survey also includes an overview of Evolved Packet Core (EPC) changes to support the Service Capability Exposure Function (SCEF) to manage both IP and non-IP data packets through Control Plane (CP) and User Plane (UP), the possible deployment scenarios of NB-IoT in future Heterogeneous Wireless Networks (HetNet). Finally, existing and emerging research challenges in this direction are presented to motivate future research activities.

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2320
Author(s):  
Zawar Shah ◽  
Andrew Levula ◽  
Khawar Khurshid ◽  
Jawad Ahmed ◽  
Imdad Ullah ◽  
...  

The Internet of Things (IoT) is aimed to provide efficient and seamless connectivity to a large number of low-power and low-cost embedded devices, consequently, the routing protocols play a fundamental role in achieving these goals. The IETF has recently standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) for LLNs (i.e., Low-power and Lossy Networks) and is well-accepted among the Internet community. However, RPL was proposed for static IoT devices and suffers from many issues when IoT devices are mobile. In this paper, we first present various issues that are faced by the RPL when IoT devices are mobile. We then carry out a detailed survey of various solutions that are proposed in the current literature to mitigate the issues faced by RPL. We classify various solutions into five categories i.e., ‘Trickle-timer based solutions’, ‘ETX based solutions’, ‘RSSI based solutions’, ‘Position-based solutions’, and ‘Miscellaneous solutions’. For each category of these solutions, we illustrate their working principles, issues addressed and make a thorough assessment of their strengths and weaknesses. In addition, we found several flaws in the performance analysis done by the authors of each of the solutions, e.g., nodes mobility, time intervals, etc., and suggest further investigations for the performance evaluations of these solutions in order to assess their applicability in real-world environments. Moreover, we provide future research directions for RPL supporting various real-time applications, mobility support, energy-aware, and privacy-aware routing.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1793 ◽  
Author(s):  
Yousaf Bin Zikria ◽  
Sung Won Kim ◽  
Oliver Hahm ◽  
Muhammad Khalil Afzal ◽  
Mohammed Y. Aalsalem

Internet of Things (IoT) is rapidly growing and contributing drastically to improve the quality of life. Immense technological innovations and growth is a key factor in IoT advancements. Readily available low cost IoT hardware is essential for continuous adaptation of IoT. Advancements in IoT Operating System (OS) to support these newly developed IoT hardware along with the recent standards and techniques for all the communication layers are the way forward. The variety of IoT OS availability demands to support interoperability that requires to follow standard set of rules for development and protocol functionalities to support heterogeneous deployment scenarios. IoT requires to be intelligent to self-adapt according to the network conditions. In this paper, we present brief overview of different IoT OSs, supported hardware, and future research directions. Therein, we provide overview of the accepted papers in our Special Issue on IoT OS management: opportunities, challenges, and solution. Finally, we conclude the manuscript.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Kwang-il Hwang ◽  
Sung-Hyun Yoon

Even though a lot of research has made significant contributions to advances in sensor networks, sensor network protocols, which have different characteristics according to the target application, might confuse machine-to-machine (M2M) network designers when they choose the protocol most suitable for their specific applications. Therefore, this paper provides a well-defined taxonomy of low-power listening protocols by examining in detail the existing low-power sensor network protocols and evaluation results. It will also be very useful for helping M2M designers understand specific features of low-power media access control protocols as they design new M2M networks.


This paper presents the design and realization of low-cost and ultra-low-power consuming remote transfer units (RTUs), working as communication gateways for collecting, aggregating, and forwarding IoT data to information centers (servers) in the cloud for further processing and data mining. Two types of RTUs, targeting different application scenarios and utilizing different communication standards, were designed – one, based on the General Packet Radio Service (GPRS) standard, and another – on the NarrowBand Internet of Things (NB-IoT) standard. The developed RTUs were experimentally tested and their use was successfully demonstrated in different IoT systems.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4651 ◽  
Author(s):  
Shadia Awadallah ◽  
David Moure ◽  
Pedro Torres-González

In the last few years, there has been a huge interest in the Internet of Things (hereinafter IoT) field. Among the large number of IoT technologies, the low-power wide-area network (hereinafter LPWAN) has emerged providing low power, low data-rate communication over long distances, enabling battery-operated devices to operate for long time periods. This paper introduces an application of long-range (hereinafter LoRa) technology, one of the most popular LPWANs, to volcanic surveillance. The first low-power and low-cost wireless network based on LoRa to monitor the soil temperature in thermal anomaly zones in volcanic areas has been developed. A total of eight thermometers (end devices) have been deployed on a Teide volcano in Tenerife (Canary Islands). In addition, a repeater device was developed to extend the network range when the gateway did not have a line of sight connection with the thermometers. Combining LoRa communication capabilities with microchip microcontrollers (end devices and repeater) and a Raspberry Pi board (gateway), three main milestones have been achieved: (i) extreme low-power consumption, (ii) real-time and proper temperature acquisition, and (iii) a reliable network operation. The first results are shown. These results provide enough quality for a proper volcanic surveillance.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-33
Author(s):  
Fan Xu ◽  
Victor S. Sheng ◽  
Mingwen Wang

With the proliferation of social sensing, large amounts of observation are contributed by people or devices. However, these observations contain disinformation. Disinformation can propagate across online social networks at a relatively low cost, but result in a series of major problems in our society. In this survey, we provide a comprehensive overview of disinformation and truth discovery in social sensing under a unified perspective, including basic concepts and the taxonomy of existing methodologies. Furthermore, we summarize the mechanism of disinformation from four different perspectives (i.e., text only, text with image/multi-modal, text with propagation, and fusion models). In addition, we review existing solutions based on these requirements and compare their pros and cons and give a sort of guide to usage based on a detailed lesson learned. To facilitate future studies in this field, we summarize related publicly accessible real-world data sets and open source codes. Last but the most important, we emphasize potential future research topics and challenges in this domain through a deep analysis of most recent methods.


2011 ◽  
Vol 216 ◽  
pp. 768-772
Author(s):  
Zhe Tao Li ◽  
Tingrui Pei ◽  
Shu Yang

Multimedia wireless sensor networks (MWSN) have outstanding ability of acquiring and processing information. Media access control is a research hotspot in MWSN. Many MAC protocols with different objectives for wireless sensor networks have been proposed by researchers, however, few of them suit for MWSN. This article presented an overview of characteristics and challenges of MAC in MWSN. We firstly overviewed of the research effort; then we compared different protocols; finally we point out some possible directions of future research on MAC layer design.


Sign in / Sign up

Export Citation Format

Share Document