scholarly journals Influence of Electrode Connection Tracks on Biological Cell Measurements by Impedance Spectroscopy

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2839 ◽  
Author(s):  
Arthur Luiz Alves de Araujo ◽  
Julien Claudel ◽  
Djilali Kourtiche ◽  
Mustapha Nadi

The limit of detection of a biological sensor is an important parameter because, when it is optimized, it allows the detection of a reduced number of biological cells and the reduction of the detection time. This parameter can be improved upon with a reduction in electrode size, but the rate of detection is similarly reduced as well. To avoid this problem, we propose a sensor matrix composed of 20 × 20 µm² coplanar square electrodes with a standard clean room manufacturing process. However, it was observed that the exposition of electrode connection tracks to the solution reduces the normalized impedance variation. In this pursuit, we propose in this paper an analysis of electrode connection tracks on the normalized impedance variation and cutoff frequencies to biological cell measurements by impedance spectroscopy. The experimental results were obtained using the E4990A Keysight impedance analyser (Keysight Technologies, Santa Rosa, CA, USA) with a frequency band ranging from 100 Hz to 12 MHz, thus allowing for good measurement accuracy. Therefore, it was found that, for the measurements between the electrodes with 9 µm of connection tracks in contact with the solution, the normalized impedance variation was from 3.7% to 4.2% for different measurements, while, for the electrodes with 40 µm of connection tracks in contact with the solution, the normalized impedance variation was from 1.8% to 2.1% for different measurements.

Author(s):  
Pahnit Seriburi ◽  
Ashutosh Shastry ◽  
Angelique Van’t Wout ◽  
John Mittler ◽  
Shih-Hui Chao ◽  
...  

Single-cell impedance spectroscopy integrated with lab-on-a-chip systems provides a direct and minimally invasive approach for monitoring and characterizing properties of individual cells in real-time. Here we investigate the theoretical potential and limitations of this technique for analyzing single membrane-bound particles as small as 100 nm in diameter. Our theoretical model suggests a lower limit of detection for single cells on the order of a few microns.


2021 ◽  
Vol 14 (3) ◽  
pp. 2477-2500
Author(s):  
Benjamin Lang ◽  
Wolfgang Breitfuss ◽  
Simon Schweighart ◽  
Philipp Breitegger ◽  
Hugo Pervier ◽  
...  

Abstract. This work describes the latest design, calibration and application of a near-infrared laser diode-based photoacoustic (PA) hygrometer developed for total water content measurement in simulated atmospheric freezing precipitation and high ice water content conditions with relevance in fundamental icing research, aviation testing, and certification. The single-wavelength and single-pass PA absorption cell is calibrated for molar water vapor fractions with a two-pressure humidity generator integrated into the instrument. Laboratory calibration showed an estimated measurement accuracy better than 3.3 % in the water vapor mole fraction range of 510–12 360 ppm (5 % from 250–21 200 ppm) with a theoretical limit of detection (3σ) of 3.2 ppm. The hygrometer is examined in combination with a basic isokinetic evaporator probe (IKP) and sampling system designed for icing wind tunnel applications, for which a general description of total condensed water content (CWC) measurements and uncertainties are presented. Despite the current limitation of the IKP to a hydrometeor mass flux below 90 gm-2s-1, a CWC measurement accuracy better than 20 % is achieved by the instrument above a CWC of 0.14 g m−3 in cold air (−30 ∘C) with suitable background humidity measurement. Results of a comparison to the Cranfield University IKP instrument in freezing drizzle and rain show a CWC agreement of the two instruments within 20 %, which demonstrates the potential of PA hygrometers for water content measurement in atmospheric icing conditions.


2020 ◽  
Vol 10 (6) ◽  
pp. 2089 ◽  
Author(s):  
Guoying Ren ◽  
Xinghua Qu ◽  
Xiangjun Chen

A step gauge is a commonly used length standard for international comparison, and its calibration accuracy is often used as a sign to measure a country’s length Calibration and Measurement Capability (CMC). Based on this, some developed countries and developing countries all over the world have been carrying out the research of precision calibration technology for step gauge. On the basis of summarizing the current situation of step gauge calibration technology in other countries, this paper presents a new computational model of step gauge calibration based on the Synthesis Technology of Multi-Path Laser Interferometers (SMLI) and an auto-collimator, which can synthesize the three laser light paths into the measured centerline of step gauge. It is very important to obtain a good measurement accuracy for the step gauge, conformed to the Abbe principle, no matter where it is installed on the CMM measurement platform. In this paper, the development of the mathematical model, the data collection algorithms, data analysis techniques, and measurement uncertainty budgets are discussed. Finally, the experimental measurement is carried out and the measurement accuracy is verified to be effective. The results show that this method can effectively avoid the influence of Abbe error in length measurement, and significantly enhance the calibration accuracy of the step gauge.


2015 ◽  
Vol 799-800 ◽  
pp. 915-918
Author(s):  
M. Benounis ◽  
Nicole Jaffrezic ◽  
Isabelle Bonnamour ◽  
Nadhir Messai

A new SPR sensor surface based onself-assembled-Calix [4] arene-derivative-monolayer was proposed for the detection of sodium in water. The immobisation of claixarene onto the gold surface was confirmed by impedance spectroscopy (EIS). Three alkaliions were used K+, Na+and Ca2+and the influence of pH on ions detection was studied and optimized. The Calix [4] arene-gold SPR sensor developed was characterized by low limit of detection (LOD) for about 10-10M, high sensitivity and wide linear detection range between 10-6M and 10-14M.


Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 108 ◽  
Author(s):  
Arthur Luiz Alves de Araujo ◽  
Julien Claudel ◽  
Djilali Kourtiche ◽  
Mustapha Nadi

New technologies, such as biosensors and lab-on-a-chip, are reducing time consumption and costs for the detection and characterization of biological cells. One challenge is to detect and characterize cells and bacteria one by one or at a very low concentration. In this case, measurements have very low variations that can be difficult to detect. In this article, the use of an insulation layer on the connection tracks of a biosensor with coplanar electrodes is proposed to improve a biosensor previously developed. The impedance spectroscopy technique was used to analyze the influence of the insulation layer on the cutoff frequencies and on the normalized impedance variation. This solution does not induce changes in the cutoff frequencies, though it permits improving the normalized impedance variations, compared to the same biosensor without the insulation layer.


2013 ◽  
Vol 811 ◽  
pp. 337-340
Author(s):  
Chao Zhang ◽  
De Jiang Shang ◽  
Qi Li

Distinguished from the conventional discrete-point measurement, a continuous scanning measurement method of the sound field radiated from submerged structure is proposed. By rotating the structure uniformly and continuously, the pressure signals were recorded by the hydrophones array that was located in the far field. The signals were analyzed by Fourier transform respectively, and the sound field information could be obtained by the further derivation. By using the continuous scanning measurement, the spectrum broadening phenomenon was observed and analyzed. And then the point sound source field simulation and the sound power measurement experiment were carried out to prove the reliability of this method. The results show that, compared with the conventional discrete-point measurement, the continuous scanning measurement can acquire more information in less measurement time, and reduce the measurement work greatly under good measurement accuracy.


Sign in / Sign up

Export Citation Format

Share Document