scholarly journals Enhanced 3-D GM-MAC Protocol for Guaranteeing Stability and Energy Efficiency of IoT Mobile Sensor Networks

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3230 ◽  
Author(s):  
Yoonkyung Jang ◽  
Ahreum Shin ◽  
Intae Ryoo

In wireless sensor networks, energy efficiency is important because sensor nodes have limited energy. 3-dimensional group management medium access control (3-D GM-MAC) is an attractive MAC protocol for application to the Internet of Things (IoT) environment with various sensors. 3-D GM-MAC outperforms the existing MAC schemes in terms of energy efficiency, but has some stability issues. In this paper, methods that improve the stability and transmission performance of 3-D GM-MAC are proposed. A buffer management scheme for sensor nodes is newly proposed. Fixed sensor nodes that have a higher priority than the mobile sensor nodes in determining the group numbers that were added, and an advanced group number management scheme was introduced. The proposed methods were simulated and analyzed. The newly derived buffer threshold had a similar energy efficiency to the original 3-D GM-MAC, but improved performance in the aspects of data loss rate and data collection rate. Data delay was not included in the comparison factors as 3-D GM-MAC targets non-real-time applications. When using fixed sensor nodes, the number of group number resets is reduced by about 43.4% and energy efficiency increased by about 10%. Advanced group number management improved energy efficiency by about 23.4%. In addition, the advanced group number management with periodical group number resets of the entire sensor nodes showed about a 48.9% improvement in energy efficiency.

2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


Author(s):  
Ananda Kumar K S ◽  
Balakrishna R

At present day’s wireless sensor networks, obtain a lot consideration to researchers. Maximum number of sensor nodes are scattered that can communicate with all others. Reliable data communication and energy consumption are the mainly significant parameters that are required in wireless sensor networks. Many of MAC protocols have been planned to improve the efficiency more by enhancing the throughput and energy consumption. The majority of the presented medium access control protocols to only make available, reliable data delivery or energy efficiency does not offer together at the same time. In this research work the author proposes a novel approach based on Receiver Centric-MAC is implemented using NS2 simulator. Here, the author focuses on the following parametric measures like - energy consumption, reliability and bandwidth. RC-MAC provides high bandwidth without decreasing energy efficiency. The results show that 0.12% of less energy consumption, reliability improved by 20.86% and bandwidth increased by 27.32% of RC-MAC compared with MAC IEEE 802.11.


Author(s):  
Pardeep Kumar ◽  
Mesut Gunes

This chapter provides an overall understanding of the design aspects of Medium Access Control (MAC) protocols for Wireless Sensor Networks (WSNs). A WSN MAC protocol shares the wireless broadcast medium among sensor nodes and creates a basic network infrastructure for them to communicate with each other. The MAC protocol also has a direct influence on the network lifetime of WSNs as it controls the activities of the radio, which is the most power-consuming component of resource-scarce sensor nodes. In this chapter, the authors first discuss the basics of MAC design for WSNs and present a set of important MAC attributes. Subsequently, authors discuss the main categories of MAC protocols proposed for WSNs and highlight their strong and weak points. After briefly outlining different MAC protocols falling in each category, the authors provide a substantial comparison of these protocols for several parameters. Lastly, the chapter discusses future research directions on open issues in this field that have mostly been overlooked.


2013 ◽  
pp. 947-974
Author(s):  
Pardeep Kumar ◽  
Mesut Gunes

This chapter provides an overall understanding of the design aspects of Medium Access Control (MAC) protocols for Wireless Sensor Networks (WSNs). A WSN MAC protocol shares the wireless broadcast medium among sensor nodes and creates a basic network infrastructure for them to communicate with each other. The MAC protocol also has a direct influence on the network lifetime of WSNs as it controls the activities of the radio, which is the most power-consuming component of resource-scarce sensor nodes. In this chapter, the authors first discuss the basics of MAC design for WSNs and present a set of important MAC attributes. Subsequently, authors discuss the main categories of MAC protocols proposed for WSNs and highlight their strong and weak points. After briefly outlining different MAC protocols falling in each category, the authors provide a substantial comparison of these protocols for several parameters. Lastly, the chapter discusses future research directions on open issues in this field that have mostly been overlooked.


Author(s):  
GEETHANJALI S ◽  
PRAVIN RENOLD A

Wireless Sensor Network (WSN) is a self-organizing and distributed collection of small sensor nodes with limited energy are connected wirelessly to the sink, where the information is needed. The significant trait for any Wireless Sensor Network is power consumption since WSNs finds its most of the applications in unsafe, risky areas like Volcano eruption identification, Warfield monitoring, where human intervention is less or not possible at all. Hence designing a protocol with minimum energy consumption as a concern is an important challenge in increasing the lifetime of the sensor networks. Medium Access Control (MAC) Layer of WSN consumes much of the energy as it contains the radio component. Energy problems in MAC layer include collision, idle listening, and protocol overhead. Our Proposed MAC protocol provides solution for the problem of: collision by providing multiple channels; idle listening by providing sleeping mechanism for the nodes other than the active node; overhead by reducing the number of control messages. Avoiding collision results in the decrease in number of retransmissions which consumes more energy, avoiding idle listening problem will fairly increase the lifetime of the sensor node as well as the network’s lifetime and reducing overhead in turn consumes less energy.


Author(s):  
Torsten Braun ◽  
Markus Anwander ◽  
Philipp Hurni ◽  
Markus Wälchli

The chapter describes related work on medium access control protocols for wireless sensor nodes. We focus on scheduled and contention-based protocols that have been proposed by the research community during the last few years. In particular, we evaluate the potential to save energy of several representative protocols, namely LMAC, TEEM, and WiseMAC. This has been done by measurements of implementations in real sensor networks. The measurement results show that by sophisticated MAC protocol design we can significantly improve the energy-efficiency and increase the lifetime of a sensor node. Real-world measurements are important to determine power consumption parameters of sensor nodes.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2806 ◽  
Author(s):  
Faisal Alfouzan ◽  
Alireza Shahrabi ◽  
Seyed Ghoreyshi ◽  
Tuleen Boutaleb

Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Sign in / Sign up

Export Citation Format

Share Document