scholarly journals An Efficient Scalable Scheduling MAC Protocol for Underwater Sensor Networks

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2806 ◽  
Author(s):  
Faisal Alfouzan ◽  
Alireza Shahrabi ◽  
Seyed Ghoreyshi ◽  
Tuleen Boutaleb

Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes.

Author(s):  
Pardeep Kumar ◽  
Mesut Gunes

This chapter provides an overall understanding of the design aspects of Medium Access Control (MAC) protocols for Wireless Sensor Networks (WSNs). A WSN MAC protocol shares the wireless broadcast medium among sensor nodes and creates a basic network infrastructure for them to communicate with each other. The MAC protocol also has a direct influence on the network lifetime of WSNs as it controls the activities of the radio, which is the most power-consuming component of resource-scarce sensor nodes. In this chapter, the authors first discuss the basics of MAC design for WSNs and present a set of important MAC attributes. Subsequently, authors discuss the main categories of MAC protocols proposed for WSNs and highlight their strong and weak points. After briefly outlining different MAC protocols falling in each category, the authors provide a substantial comparison of these protocols for several parameters. Lastly, the chapter discusses future research directions on open issues in this field that have mostly been overlooked.


2013 ◽  
pp. 947-974
Author(s):  
Pardeep Kumar ◽  
Mesut Gunes

This chapter provides an overall understanding of the design aspects of Medium Access Control (MAC) protocols for Wireless Sensor Networks (WSNs). A WSN MAC protocol shares the wireless broadcast medium among sensor nodes and creates a basic network infrastructure for them to communicate with each other. The MAC protocol also has a direct influence on the network lifetime of WSNs as it controls the activities of the radio, which is the most power-consuming component of resource-scarce sensor nodes. In this chapter, the authors first discuss the basics of MAC design for WSNs and present a set of important MAC attributes. Subsequently, authors discuss the main categories of MAC protocols proposed for WSNs and highlight their strong and weak points. After briefly outlining different MAC protocols falling in each category, the authors provide a substantial comparison of these protocols for several parameters. Lastly, the chapter discusses future research directions on open issues in this field that have mostly been overlooked.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3895 ◽  
Author(s):  
Yuan Dong ◽  
Lina Pu ◽  
Yu Luo ◽  
Zheng Peng ◽  
Haining Mo ◽  
...  

In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications.


2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


2021 ◽  
Vol 6 (6) ◽  
pp. 39-53
Author(s):  
Hanan Alahmadi ◽  
Fatma Boabdullah

Wireless Sensor Networks (WSNs) are witnessing a momentum spread especially with the growth of the Internet of Things (IoT) paradigm. Indeed, WSNs are considered as the main enabling infrastructure for IoT networks. Nowadays, the emerging WSNs applications require not only long network lifespan but also considerably high data rate. Consequently, conceiving Multichannel MAC protocols that save the scarceenergy budget of sensor nodes while providing high network throughput is crucial for the emerging WSNs applications. In this paper, a thorough review of recent multichannel MAC protocols is provided along with a classification framework to deeply understand the design aspects for each protocol.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1219
Author(s):  
Arnold Chau ◽  
John Dawson ◽  
Paul Mitchell ◽  
Tian Hong Loh

Medium access control (MAC) protocols play a vital role in making effective use of a multiple access channel as it governs the achievable performance such as channel utilization and corresponding quality of service of wireless sensor networks (WSNs). In this paper, a virtual carrier sensing directional hub (VSDH) MAC protocol incorporating realistic directional antenna patterns is proposed for directional single hub centralized WSNs. While in most instances, MAC protocols assume idealized directional antenna patterns, the proposed VSDH-MAC protocol incorporates realistic directional antenna patterns to deliver enhanced link performance. We demonstrate that the use of directional antennas with a suitable MAC protocol can provide enhanced communication range and increased throughput with reduced energy consumption at each node, compared to the case when only omnidirectional antennas are used. For the scenarios considered in this study, results show that the average transmit power of the sensor nodes can be reduced by a factor of two, and at the same time offer significantly extended lifetime.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.


2018 ◽  
Vol 7 (3.16) ◽  
pp. 81 ◽  
Author(s):  
Meena Malik ◽  
Mukesh Sharma

The Sensor technology has made encouraging trends in the field of wireless Networks by its innovative methods and adaptability. The  fundamental issue for wireless sensor networks (WSN) is to minimize energy consumption at each node due to restricted energy source.   The sensor nodes generally get random deployment and  need cooperation to accomplish specific operation in the network like  monitoring or  tracking any target in the environment. Due to limited power source nodes need careful use of energy resources. This work targets on simulating the power consumption behavior and analyzing the performance of 802.11 and S-MAC protocol for medium access control layer in wireless networks. S-MAC improves energy consumption by allocating bandwidth in efficient manner and  avoiding causes of energy waste. After simulation, it was found that S-MAC is Power-Efficient over 802.11 without losing on the performance using NS-2.35. The paper mainly emphasize on representing the plot for energy matrices along with throughput, delay and packet delivery ratio.  


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3230 ◽  
Author(s):  
Yoonkyung Jang ◽  
Ahreum Shin ◽  
Intae Ryoo

In wireless sensor networks, energy efficiency is important because sensor nodes have limited energy. 3-dimensional group management medium access control (3-D GM-MAC) is an attractive MAC protocol for application to the Internet of Things (IoT) environment with various sensors. 3-D GM-MAC outperforms the existing MAC schemes in terms of energy efficiency, but has some stability issues. In this paper, methods that improve the stability and transmission performance of 3-D GM-MAC are proposed. A buffer management scheme for sensor nodes is newly proposed. Fixed sensor nodes that have a higher priority than the mobile sensor nodes in determining the group numbers that were added, and an advanced group number management scheme was introduced. The proposed methods were simulated and analyzed. The newly derived buffer threshold had a similar energy efficiency to the original 3-D GM-MAC, but improved performance in the aspects of data loss rate and data collection rate. Data delay was not included in the comparison factors as 3-D GM-MAC targets non-real-time applications. When using fixed sensor nodes, the number of group number resets is reduced by about 43.4% and energy efficiency increased by about 10%. Advanced group number management improved energy efficiency by about 23.4%. In addition, the advanced group number management with periodical group number resets of the entire sensor nodes showed about a 48.9% improvement in energy efficiency.


Author(s):  
Yupeng Hu ◽  
Rui Li

As an enabling network technology, energy efficient Medium Access Control (MAC) protocol plays a vital role in a battery-powered distributed sensor network. MAC protocols control how sensor nodes access a shared radio channel to communicate with each other. This chapter discusses the key elements of MAC design with an emphasis on energy efficiency. Furthermore, it reviews several typical MAC protocols proposed in the literature, comparing their energy conservation mechanism. Particularly, it presents a Collaborative Compression Based MAC (CCP-MAC) protocol, which takes advantage of the overheard data to achieve energy savings. Finally, it compares the performance of CCP-MAC with related MAC protocols, illustrating their advantages and disadvantages.


Sign in / Sign up

Export Citation Format

Share Document