scholarly journals A limiting Current Oxygen Sensor Constituted of (CeO2)0.95(Y2O3)0.05 as Solid Electrolyte Layer and (CeO2)0.75(ZrO2)0.25 as Dense Diffusion Barrier Layer

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3511
Author(s):  
Wang ◽  
Liu ◽  
Yu

Using the co-precipitation method to synthesize (CeO2)0.95(Y2O3)0.05 (YDC) and solidreaction method to synthesize (CeO2)0.75(ZrO2)0.25 (ZDC), and the crystal structure, micro-structure,total conductivity and electronic conductivity of the two materials was measured with X-raydiffraction (XRD), scanning electron microscope (SEM), DC van der Pauw and Hebb-Wagnermethods. A limiting current oxygen sensor was prepared with YDC solid electrolyte and a ZDCdense diffusion barrier layer by employing platinum pasting bonding. Sensing characteristics ofthe sensor were obtained at different conditions, including temperature (T), oxygen concentration(x(O2)) and water vapor pressure (p(H2O)), and the influence of various conditions on sensingperformance was studied. The long-term stability of the sensor was measured in an oxygen concentration of 1.2% and at a temperature of 800 °C for 120 h. XRD results show that the phase structure of both YDC and ZDC belongs to the cubic phase. SEM results show that both YDC and ZDC layers are dense layers, which are then qualified to be the composition materials of the sensor. The limiting current (IL) of the sensor is obtained and the sensor exhibits good sensing characteristics to satisfy the Knudsen model. Log(IL·T) depends linearly on 1000/T with a squared correlation coefficient (R2) of 0.9904; IL depends linearly on x(O2) with an R2 of 0.9726; and sensing characteristics are not affected by p(H2O). It was found that the oxygen sensor has good long-term stability.

2013 ◽  
Vol 703 ◽  
pp. 111-114
Author(s):  
Yin Lin Wu ◽  
Hai Yan Zhao ◽  
Fu Shen Li

The fabrication and operation of a new thick film type of limiting current oxygen sensor is demonstrated that utilizes yttria (8% mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2CoO3(LSC) as diffusion barrier. The oxygen sensor shows a near linear response between 0 to 10.5% O2in argon at 1023K. The advantages of the sensor are simple construction, low cost and potential long term stability.


2008 ◽  
Vol 368-372 ◽  
pp. 263-264
Author(s):  
Yin Lin Wu ◽  
Ling Wang ◽  
Fu Shen Li ◽  
Yan Qin Zhao

A thick film type of limiting current oxygen sensor which uses yttria (8% mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2MnO3 (LSM) as diffusion barrier was developed successfully. The oxygen sensor showed excellent performance at oxygen concentrations ranging from 0 to 10 ppm. The advantages of the sensor are simple construction, low cost and potential long term stability.


2007 ◽  
Vol 336-338 ◽  
pp. 417-419 ◽  
Author(s):  
Ling Wang ◽  
Fu Shen Li ◽  
Hui Zhu Zhou ◽  
Hui Xia ◽  
Mei Yang ◽  
...  

A new type of limiting current oxygen sensor which uses yttria (8%mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2FeO3 (LSF) as diffusion barrier was developed successfully. The oxygen sensor shows excellent performance at oxygen concentrations range of from 0 to 21%. The advantages of the sensor are simple construction, low cost and potential long term stability.


Author(s):  
J. Froitzheim ◽  
L. Niewolak ◽  
M. Brandner ◽  
L. Singheiser ◽  
W. J. Quadakkers

During the operation of solid oxide fuel cells (SOFCs) the Ni base anode and/or Ni-mesh is in direct contact with the ferritic steel interconnect or the metallic substrate. For assuring long-term stack operation a diffusion barrier layer with high electronic conductivity may be needed to impede interdiffusion between the various components. A pre-oxidation layer on the ferritic steel turned out to be not viable as a barrier layer since a Ni-layer tends to dissociate the oxide scale. Therefore the potential of ceria as a diffusion barrier layer for the anode side of the SOFC was estimated. The barrier properties of a ceria coating between the Ni and the ferritic steel Crofer 22 APU were tested for 1000 h in Ar–4H2–2H2O at 800°C. Conductivity experiments were performed in the same atmosphere at different temperatures. After long-term exposures no indication of interdiffusion between Ni and ferritic steel could be detected, however, sputtered coatings on ferritic steel substrates showed significantly lower conductivities than bulk ceria samples because of void formation between the ceria and the oxide on the steel surface. The latter could be prevented by an intermediate copper layer, which resulted in overall area specific resistance values lower than 20 mΩ cm2 after 100 h exposure at 800°C.


2021 ◽  
pp. 160903
Author(s):  
Yihang Dong ◽  
Zhaoyang Liu ◽  
Guoxing Qiu ◽  
Lipeng Pang ◽  
Ye Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document