scholarly journals A Secure and Portable Multi-Sensor Module for Distributed Air Pollution Monitoring

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 403
Author(s):  
Gyorgy Kolumban-Antal ◽  
Vladko Lasak ◽  
Razvan Bogdan ◽  
Bogdan Groza

Air quality in urban environments has become a central issue of our present society as it affects the health and lives of the population all over the world. The first step in mitigating negative effects is proper measurement of the pollution level. This work presents a portable air pollution measurement system, built from off-the-shelf devices, that is designed to assure user privacy and data authenticity. Data is collected from sensor modules that can be hand carried or installed on vehicles, possibly leading to a vehicular sensor network that may cover a larger area. The main challenge is to provide authenticity for the sensor data while also ensuring user privacy. The proposed system assures authenticity and non-repudiation for the collected data by using group signatures and a blockchain-like structure for secure storage. We use regular key-exchange protocols based on elliptic curve cryptography in order to securely bootstrap a session key, then we benefit from secure tunneling to export data from sensors to the remote server. Post-update tampering is prevented by the use of a blockchain-like structure on the data server. We carry experiments both to determine the computational requirements of the procedures, as well as to measure indicators of air quality on nearby areas.

Humankind, moving to a period centered upon improvement has overlooked the significance of supportability and has been the real guilty party behind the rising Pollution levels in the world's air among all other living life forms. The Pollution levels at certain spots have come to such high degrees that they have begun hurting our very own It will being. An IoT based Air Pollution observing framework incorporates a MQ Series sensor interfaced to a Node MCU outfitted with an ESP8266 WLAN connector to send the sensor perusing to a Thing Speak cloud. Further extent of this work incorporates an appropriate AI model to foresee the air Pollution level and an anticipating model, which is fundamentally a subset of prescient displaying. As age of poisonous gases from ventures, vehicles and different sources is immensely expanding step by step, it winds up hard to control the dangerous gases from dirtying the unadulterated air. In this paper a practical air Pollution observing framework is proposed. This framework can be utilized for observing Pollutions in demeanor of specific territory and to discover the air peculiarity or property examination. The obligated framework will concentrate on the checking of air poisons concentrate with the assistance of mix of Internet of things with wireless sensor systems. The investigation of air quality should be possible by figuring air quality index (AQI)


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 290
Author(s):  
Akvilė Feiferytė Skirienė ◽  
Žaneta Stasiškienė

The rapid spread of the coronavirus (COVID-19) pandemic affected the economy, trade, transport, health care, social services, and other sectors. To control the rapid dispersion of the virus, most countries imposed national lockdowns and social distancing policies. This led to reduced industrial, commercial, and human activities, followed by lower air pollution emissions, which caused air quality improvement. Air pollution monitoring data from the European Environment Agency (EEA) datasets were used to investigate how lockdown policies affected air quality changes in the period before and during the COVID-19 lockdown, comparing to the same periods in 2018 and 2019, along with an assessment of the Index of Production variation impact to air pollution changes during the pandemic in 2020. Analysis results show that industrial and mobility activities were lower in the period of the lockdown along with the reduced selected pollutant NO2, PM2.5, PM10 emissions by approximately 20–40% in 2020.


Author(s):  
Aneri A. Desai

In Indian metropolitan cities, the extensive growth of the motor vehicles has resulted in the deterioration of environmental quality and human health. The concentrations of pollutants at major traffic areas are exceeding the permissible limits. Public are facing severe respiratory diseases and other deadly cardio-vascular diseases In India. Immediate needs for vehicular air pollution monitoring and control strategies for urban cities are necessary. Vehicular emission is the main source of deteriorating the ambient air quality of major Indian cities due to rapid urbanization. Total vehicular population is increased to 15 Lacks as per recorded data of Regional Transport Organization (RTO) till 2014-2015. This study is focused on the assessment of major air pollution parameters responsible for the air pollution due to vehicular emission. The major air pollutants responsible for air pollution due to vehicular emissions are PM10, PM2.5, Sox, Nox, HC, CO2 and CO and Other meterological parameters like Ambient temperature, Humidity, Wind direction and Wind Speed. Sampling and analysis of parameters is carried out according to National Ambient Air Quality Standards Guidelines (NAAQS) (2009) and IS 5128.


2019 ◽  
Vol 125 ◽  
pp. 25005
Author(s):  
Sudarsono ◽  
Muhammad Andang Novianta ◽  
Cyrilla Indri Parwati

In the present work, a database system of air pollution monitoring is developed using Internet of Things (IoT) technology. The system aims to give structural information and trace of air pollution level at particular monitoring station. The particular monitoring location (node) is connected to IoT/M2M server via GSM network using GPRS feature and display on IoT/M2M application in web form. The database on IoT/M2M contains name, description, and location of the monitoring station, Pollution index and the time when the data are taken. On IoT/M2M, the data are displayed either in a color bar graph or a line graph. The color indicated the index value of the pollution. The data can be accessed via internet on isfuonline.info. The system is tested at laboratory environment to detect CO, SO2, NO2, O3, and PM. The test result shows that the system is worked well. Time required to transfer the monitoring data to the IoT server is about 15 minutes. Meanwhile, response time of the system is 30 minutes.


2019 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Georgios Papastergios ◽  
Paraskevi Tzoumaka ◽  
Apostolos Kelessis

Air pollution has been one of the first environmental problems to be addressed by the EU and for this reason clean air is considered essential to good health. Information availability and understanding of the air quality issue is essential part of tackling it with efficiency. Having the latter in mind, the Municipality of Thessaloniki has considered relative environmental actions as an important priority and made significant efforts to include them in its short-term and long-term, already developed, strategies. Through these strategies the Municipality became partner in three important EU funded projects that are dealing with indoor and outdoor air pollution monitoring actions, namely CUTLER, AIRTHINGS, and LIFE SMART IN'AIR. The successful implementation of these projects will add to the knowledge of indoor and outdoor air quality in the City of Thessaloniki, whereas, at the same time, will improve the resilience of the city and the well being of its citizens.


Author(s):  
Manoj Gurung

Abstract: Degradation of air quality, like climate change and global warming, has become an all-encompassing existential hazard to humanity and natural life. Exposure to severely polluted air on a regular basis causes pulmonary disorders and contributes to severe allergies and asthma. According to studies, more than 10 million people die each year as a result of irregularities produced directly or indirectly by air pollution. The work of Lelieveld et al. [1] sheds light on the gravity of the problem. It is estimated that by 2050, the worldwide premature mortality from air pollution will exceed 6.6 million fatalities per year (358000 from ozone, the rest from PM 2.5) [1]. As a result, we decided to focus our study on improving indoor air quality. Despite the fact that there are numerous indoor air purifiers on the market, their cost belies their effectiveness, and the effective ones are far too expensive for working-class people to afford [2]. In order to address this issue, we created an automated Internet of Things (IoT) based air filtration system that uses an automated air purifier which is triggered when air quality falls below WHO criteria. Our initiative intends to improve indoor air quality by utilizing the most cost-effective and efficient modules available. Keywords: Indoor Air Pollution, Air Purifier, IAQ, Sharp Dust Sensor GP2Y1010AU0F, IoT, Particulate Matter (PM), HEPA Filter


2020 ◽  
Vol 211 ◽  
pp. 01005
Author(s):  
Nguyen Tan Danh ◽  
Le Minh Quang

In addition to the hot weather with an extremely high UV index, the air quality in some big cities of Vietnam also alarming. Air pollution will have a large impact on urban development and, above all, people’s health. The results of air pollution monitoring over the past time in Ho Chi Minh City in some locations show that dust pollution and fine dust concentration (PM2.5) in the air of the Department of Natural Resources and Environment of Ho Chi Minh City are still high and at an alarming level. This is a problem of Ho Chi Minh City, Vietnam, and a matter of concern in other countries, especially Asian countries. A few years ago, this issue was mentioned, but now it still causes frustration. The article discusses the factors that affect the air quality, and for that reason the people of the city in particular and this study must take this issue seriously and need to have effective measures.


2020 ◽  
Author(s):  
Farid RAHAL ◽  
Noureddine BENABADJI ◽  
Mohamed BENCHERIF ◽  
Mohamed Menaouer BENCHERIF

Abstract In Algeria, air pollution is classified as a major risk by the law. However, this risk is underestimated because there is no operational network for measuring air quality on a continuous basis.Despite the heavy investments made to equip several cities with these measurement systems, they are out of order due to a lack of continuous financial support.The alternative to the absence of these air pollution measurement networks can come from the recent development of electrochemical sensor technologies for air quality monitoring which arouses a certain interest because of their miniaturization, low energy consumption and low cost.We developed a low-cost outdoor carbon monoxide analyzer called APOMOS (Air pollution Monitoring System) based on electrochemical sensor managed by microcontroller. An application developed with the Python language makes it possible to manage process and analyze the collected data.In order to validate the APOMOS system, the recorded measurements are compared with measurements taken by a conventional analyzer.Comparison of the measurements resulting from conventional analyzer and those resulting from the APOMOS system gives a coefficient of determination of 98.39 %.Two versions of this system have been designed. A fixed version and another embedded, equipped with a GPS sensor. These 2 variants were used in the city of Oran in Algeria to measure the concentration of carbon monoxide continuously.The targeted pollutant is carbon monoxide. However, the design of the APOMOS system allows its evolution in an easy way in order to integrate other sensors concerning the various atmospheric pollutants.


2014 ◽  
Vol 8 (3) ◽  
pp. 1405-1410
Author(s):  
Prachit Kurani ◽  
Yash Shah

This paper presents Real-Time system for air pollution monitoring and control. The main objective of the work is designing microcontroller based toxic gas detecting and alerting system. This is a semi-automated system such that if the pollution level exceeds the normal level then an alarm is generated immediately and also an alert message (SMS) is sent to the authorized person through the GSM. Along with this the ionizer responsible for reducing the level of pollutants too would be started by the system. Time to time detected data would be stored into database for further retrieval.


Sensors ◽  
2011 ◽  
Vol 11 (12) ◽  
pp. 11235-11250 ◽  
Author(s):  
Young Jin Jung ◽  
Yang Koo Lee ◽  
Dong Gyu Lee ◽  
Yongmi Lee ◽  
Silvia Nittel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document