scholarly journals ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 789 ◽  
Author(s):  
Manuel Cardona ◽  
Cecilia E. García Cena ◽  
Fernando Serrano ◽  
Roque Saltaren

Objective: In this article, we present the conceptual development of a robotics platform, called ALICE (Assistive Lower Limb Controlled Exoskeleton), for kinetic and kinematic gait characterization. The ALICE platform includes a robotics wearable exoskeleton and an on-board muscle driven simulator to estimate the user’s kinetic parameters. Background: Even when the kinematics patterns of the human gait are well studied and reported in the literature, there exists a considerable intra-subject variability in the kinetics of the movements. ALICE aims to be an advanced mechanical sensor that allows us to compute real-time information of both kinetic and kinematic data, opening up a new personalized rehabilitation concept. Methodology: We developed a full muscle driven simulator in an open source environment and validated it with real gait data obtained from patients diagnosed with multiple sclerosis. After that, we designed, modeled, and controlled a 6 DoF lower limb exoskeleton with inertial measurement units and a position/velocity sensor in each actuator. Significance: This novel concept aims to become a tool for improving the diagnosis of pathological gait and to design personalized robotics rehabilitation therapies. Conclusion: ALICE is the first robotics platform automatically adapted to the kinetic and kinematic gait parameters of each patient.

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199228
Author(s):  
Buyun Wang ◽  
Yi Liang ◽  
Dezhang Xu ◽  
Zhihong Wang ◽  
Jing Ji

According to the characteristics of human gait and the requirements of power assistance, locomotive mechanisms and electrohydraulic servo driving are designed on a lower limb exoskeleton robot, in which the miniaturization and lightweight of driving system are realized. The kinematics of the robot is analyzed and verified via the typical movements of the exoskeleton. In this article, the simulation on the power of joints during level walking was analyzed in ADAMS 2016, which is a multibody simulation and motion analysis software. Motion ranges and driving strokes are then optimized. A proportional integral derivative (PID) control method with error estimation and pressure compensation is proposed to satisfy the requirements of joints power assistance and comply with the motion of human lower limb. The proposed method is implemented into the exoskeleton for assisted walking and is verified by experimental results. Finally, experiments show that the tracking accuracy and power-assisted performance of exoskeleton robot joints are improved.


2021 ◽  
pp. 151-157
Author(s):  
Luca Toth ◽  
Adam Schiffer ◽  
Veronika Pinczker ◽  
Peter Muller ◽  
Andras Buki ◽  
...  

2016 ◽  
Vol 87 (10) ◽  
pp. 104301 ◽  
Author(s):  
Mingxing Lyu ◽  
Weihai Chen ◽  
Xilun Ding ◽  
Jianhua Wang ◽  
Shaoping Bai ◽  
...  

2009 ◽  
Vol 6 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Juan C. Moreno ◽  
Fernando Brunetti ◽  
Enrique Navarro ◽  
Arturo Forner-Cordero ◽  
José L. Pons

The design of a wearable robotic exoskeleton needs to consider the interaction, either physical or cognitive, between the human user and the robotic device. This paper presents a method to analyse the interaction between the human user and a unilateral, wearable lower-limb exoskeleton. The lower-limb exoskeleton function was to compensate for muscle weakness around the knee joint. It is shown that the cognitive interaction is bidirectional; on the one hand, the robot gathered information from the sensors in order to detect human actions, such as the gait phases, but the subjects also modified their gait patterns to obtain the desired responses from the exoskeleton. The results of the two-phase evaluation of learning with healthy subjects and experiments with a patient case are presented, regarding the analysis of the interaction, assessed in terms of kinematics, kinetics and/or muscle recruitment. Human-driven response of the exoskeleton after training revealed the improvements in the use of the device, while particular modifications of motion patterns were observed in healthy subjects. Also, endurance (mechanical) tests provided criteria to perform experiments with one post-polio patient. The results with the post-polio patient demonstrate the feasibility of providing gait compensation by means of the presented wearable exoskeleton, designed with a testing procedure that involves the human users to assess the human-robot interaction.


2014 ◽  
Vol 627 ◽  
pp. 241-245
Author(s):  
Do Wan Cha ◽  
Kab Il Kim ◽  
Kyung Soo Kim ◽  
Bum Joo Lee ◽  
Soo Hyun Kim

In this paper, we analyse human gait patterns, including knee and hip joint torques and muscle activities, during step initiation phase and continuous walking phase. Additionally, we present a lower limb exoskeleton called the Unmanned Technology Research Centre Exoskeleton (UTRCEXO) implementing a precedence walking assistance mechanism based on the gait characteristics. The operator equipped with the Unmanned Technology Research Centre Exoskeleton (UTRCEXO) walks with a 15 kg load at 3.3 km/h step velocity.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6116
Author(s):  
Sebastian Glowinski ◽  
Tomasz Krzyzynski ◽  
Aleksandra Bryndal ◽  
Igor Maciejewski

Although it is well-established that exoskeletons as robots attached to the extremities of the human body increase their strength, limited studies presented a computer and mathematical model of a human leg hydraulic exoskeleton based on anthropometric data. This study aimed to examine lower limb joint angles during walking and running by using Inertial Measurement Units. The geometry and kinematic parameters were calculated. Twenty-six healthy adults participated in walking and running experiments. The geometric model of a human leg hydraulic exoskeleton was presented. Joint angle data acquired during experiments were used in the mathematical model. The position and velocity of exoskeleton actuators in each phase of movement were calculated using the MATLAB package (Matlab_R2017b, The MathWorks Company, Novi, MI, USA). The highest velocity of the knee actuator during walking and running was in the swing phase, 0.3 and 0.4 m/s, respectively. For the ankle and hip joints, the highest velocity of actuators occurred during the push-off phase. The results with 26 healthy subjects demonstrated that the system's compliance can be effectively adjusted while guiding the subjects walking in predefined trajectories. The developed mathematical model makes it possible to determine the position of lower limb segments and exoskeleton elements. The proposed model allows for calculating the position of the human leg and actuators’ characteristic points.


2017 ◽  
Vol 88 (10) ◽  
pp. 104302 ◽  
Author(s):  
Dong Liu ◽  
Weihai Chen ◽  
Zhongcai Pei ◽  
Jianhua Wang

2018 ◽  
Vol 8 (9) ◽  
pp. 1610 ◽  
Author(s):  
Mantian Li ◽  
Jing Deng ◽  
Fusheng Zha ◽  
Shiyin Qiu ◽  
Xin Wang ◽  
...  

Exoskeleton robots demonstrate promise in their application in assisting or enhancing human physical capacity. Joint muscular torques (JMT) reflect human effort, which can be applied on an exoskeleton robot to realize an active power-assist function. The estimation of human JMT with a wearable exoskeleton is challenging. This paper proposed a novel human lower limb JMT estimation method based on the inverse dynamics of the human body. The method has two main parts: the inverse dynamic approach (IDA) and the sensing system. We solve the inverse dynamics of each human leg separately to shorten the serial chain and reduce computational complexity, and divide the JMT into the mass-induced one and the foot-contact-force (FCF)-induced one to avoid switching the dynamic equation due to different contact states of the feet. An exoskeleton embedded sensing system is designed to obtain the user’s motion data and FCF required by the IDA by mapping motion information from the exoskeleton to the human body. Compared with the popular electromyography (EMG) and wearable sensor based solutions, electrodes, sensors, and complex wiring on the human body are eliminated to improve wearing convenience. A comparison experiment shows that this method produces close output to a motion analysis system with different subjects in different motion.


Sign in / Sign up

Export Citation Format

Share Document