scholarly journals Method to Determine the Far-Field Beam Pattern of A Long Array From Subarray Beam Pattern Measurements

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1236
Author(s):  
Donghwan Jung ◽  
Jeasoo Kim

Beam pattern measurement is essential to verifying the performance of an array sonar. However, common problems in beam pattern measurement of arrays include constraints on achieving the far-field condition and reaching plane waves mainly due to limited measurement space as in acoustic water tank. For this purpose, the conventional method of measuring beam patterns in limited spaces, which transform near-field measurement data into far-field results, is used. However, the conventional method is time-consuming because of the dense spatial sampling. Hence, we devised a method to measure the beam pattern of a discrete line array in limited space based on the subarray method. In this method, a discrete line array with a measurement space that does not satisfy the far-field condition is divided into several subarrays, and the beam pattern of the line array can then be determined from the subarray measurements by the spatial convolution that is equivalent to the multiplication of beam pattern. The proposed method was verified through simulation and experimental measurement on a line array with 256 elements of 16 subarrays.

2009 ◽  
Vol 7 ◽  
pp. 17-22 ◽  
Author(s):  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. The radiation of large antennas and those operating at low frequencies can be determined efficiently by near-field measurement techniques and a subsequent near-field far-field transformation. Various approaches and algorithms have been researched but for electrically large antennas and irregular measurement contours advanced algorithms with low computation complexity are required. In this paper an algorithm employing plane waves as equivalent sources and utilising efficient diagonal translation operators is presented. The efficiency is further enhanced using simple far-field translations in combination with the expensive near-field translations. In this way a low complexity near-field transformation is achieved, which works for arbitrary sample point distributions and incorporates a full probe correction without increasing the complexity.


2013 ◽  
Vol 11 ◽  
pp. 47-54
Author(s):  
R. A. M. Mauermayer ◽  
T. F. Eibert

Abstract. The far-field behavior of an antenna under test (AUT) can be obtained by exciting the AUT with a plane wave. In a measurement, it is sufficient if the plane wave is artificially generated in the vicinity of the AUT. This can be achieved by using a virtual antenna array formed by a probe antenna which is sequentially sampling the radiating near-field of the AUT at different positions. For this purpose, an optimal filter for the virtual antenna array is computed in a preprocessing step. Applying this filter to the near-field measurements, the far-field of the AUT is obtained according to the propagation direction and polarization of the synthesized plane wave. This means that the near-field far-field transformation (NFFFT) is achieved simply by filtering the near-field measurement data. Taking the radiation characteristic of the probe antenna into account during the synthesis process, its influence on the NFFFT is compensated. The principle of the plane-wave synthesis and its application to the NFFFT is presented in detail in this paper. Furthermore, the method is verified by performing transformations of simulated near-field measurement data and of near-field data measured in an anechoic chamber.


2012 ◽  
Vol 10 ◽  
pp. 75-78
Author(s):  
R. Brem ◽  
T. F. Eibert

Abstract. A restriction in using electromagnetic ray tracing for field prediction is given by the far-field condition: the results are only valid in the far-field region of the radiator. In this paper, it will be shown how ray tracing for accurate field computation can also be applied in the near-field regions of transmitters. The reduction of required large distances between transmitter and receiver is achieved by subdividing the transmitter in smaller subtransmitters. Even for complex transmitters, e.g. antennas with objects in close proximity such as metallic carrier platforms, subtransmitter models can be very efficiently generated by using the Multilevel Fast Multipole Method (MLFMM). This well-known integral equation solving technique makes very large problems in computational electromagnetics manageable. The subtransmitters can be directly generated based on this algorithm. A simulation example will show the improved modeling accuracy and options for simplification and refinement will also be discussed.


2014 ◽  
Vol 12 ◽  
pp. 171-177 ◽  
Author(s):  
G. Schnattinger ◽  
C. Lopez ◽  
E. Kılıç ◽  
T. F. Eibert

Abstract. The characterization of antenna radiation patterns by transformed near-field measurements requires accurate amplitude and phase data. This represents a problem since expensive measurement equipment is required, especially at millimeter and submillimeter wavelengths (Isernia et al., 1996). Amplitude-only antenna field measurements are theoretically sufficient for the unique determination of antenna far-fields. Therefore, phaseless techniques are of special interest. However, the required field transformations are extremely challenging, since they are nonlinear and strongly ill-posed. In this work, the amplitude-only or phaseless near-field far-field transformation problem is formulated as a nonlinear optimization problem. The linear radiation operator within the nonlinear formulation is evaluated using the fast irregular antenna field transformation algorithm (FIAFTA). A hybrid solution procedure is described which combines a genetic algorithm with an iterative conjugate gradient (CG) search method. Numerical results prove the efficiency and flexibility of the formulation and it is shown that the algorithm remains stable when the noise level in the measurements is moderate. Nevertheless, regularization techniques might be beneficial to further improve the robustness of the algorithm.


Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

1998 ◽  
Vol 38 (10) ◽  
pp. 323-330
Author(s):  
Philip J. W. Roberts

The results of far field modeling of the wastefield formed by the Sand Island, Honolulu, ocean outfall are presented. A far field model, FRFIELD, was coupled to a near field model, NRFIELD. The input data for the models were long time series of oceanographic observations over the whole water column including currents measured by Acoustic Doppler Current Profilers and density stratification measured by thermistor strings. Thousands of simulations were made to predict the statistical variation of wastefield properties around the diffuser. It was shown that the visitation frequency of the wastefield decreases rapidly with distance from the diffuser. The spatial variation of minimum and harmonic average dilutions was also predicted. Average dilution increases rapidly with distance. It is concluded that any impact of the discharge will be confined to a relatively small area around the diffuser and beach impacts are not likely to be significant.


Sign in / Sign up

Export Citation Format

Share Document