scholarly journals Graphene-Oxide-Based Electrochemical Sensors for the Sensitive Detection of Pharmaceutical Drug Naproxen

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1252 ◽  
Author(s):  
Lanting Qian ◽  
Antony Raj Thiruppathi ◽  
Reem Elmahdy ◽  
Joshua van der Zalm ◽  
Aicheng Chen

Here we report on a selective and sensitive graphene-oxide-based electrochemical sensor for the detection of naproxen. The effects of doping and oxygen content of various graphene oxide (GO)-based nanomaterials on their respective electrochemical behaviors were investigated and rationalized. The synthesized GO and GO-based nanomaterials were characterized using a field-emission scanning electron microscope, while the associated amounts of the dopant heteroatoms and oxygen were quantified using x-ray photoelectron spectroscopy. The electrochemical behaviors of the GO, fluorine-doped graphene oxide (F-GO), boron-doped partially reduced graphene oxide (B-rGO), nitrogen-doped partially reduced graphene oxide (N-rGO), and thermally reduced graphene oxide (TrGO) were studied and compared via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that GO exhibited the highest signal for the electrochemical detection of naproxen when compared with the other GO-based nanomaterials explored in the present study. This was primarily due to the presence of the additional oxygen content in the GO, which facilitated the catalytic oxidation of naproxen. The GO-based electrochemical sensor exhibited a wide linear range (10 µM–1 mM), a high sensitivity (0.60 µAµM−1cm−2), high selectivity and a strong anti-interference capacity over potential interfering species that may exist in a biological system for the detection of naproxen. In addition, the proposed GO-based electrochemical sensor was tested using actual pharmaceutical naproxen tablets without pretreatments, further demonstrating excellent sensitivity and selectivity. Moreover, this study provided insights into the participatory catalytic roles of the oxygen functional groups of the GO-based nanomaterials toward the electrochemical oxidation and sensing of naproxen.

2019 ◽  
Vol 9 (3) ◽  
pp. 143-152 ◽  
Author(s):  
Chenglong Chen ◽  
Zhen Han ◽  
Wu Lei ◽  
Yong Ding ◽  
Jingjing Lv ◽  
...  

The glassy carbon electrode (GCE) was modified by electrochemically reduced graphene oxide (ERGO) and polypyrrole (PPy) prepared by simple cyclic voltammetry (CV) electropoly­merization. The PPy/ERGO modified electrode (PPy/ERGO/GCE) was used as a platform of electrochemical sensor to detect imidacloprid (IMI) insecticide. CV and differential pulse voltammetry (DPV) were chosen as the methods to investigate of the electrochemical behavior of IMI on PPy/ERGO/GCE surface. Scanning electron microscopy (SEM) and Raman spectra were utilized to describe the morphology and structure of the modified electrode. Experimental parameters were optimized, such as the number of polymerization cycles, scan rate and the pH value of electrolyte. Under the optimized conditions, when the concentration of IMI was in the range of 1-10 μM and 10-60 μM, the increase of reduction peak current was linear with the concentration of IMI, and the low detection limit was found to be 0.18 μM (S/N = 3). Results showed that PPy/ERGO/GCE demonstrated satisfactory reproducibility and stability, and has great potential in actual sample testing.


2013 ◽  
Vol 716 ◽  
pp. 127-131 ◽  
Author(s):  
Ming Jie Li ◽  
Chen Ming Liu ◽  
Hong Bin Cao ◽  
Yi Zhang

In this contribution, the surface electrical properties of graphene oxide (GO), chemically reduced graphene oxide (RGO) and thermally exfoliated graphene oxide (EGO) were characterized by zeta potential. Their surface morphologies were observed by scanning electron microscope. Then they were immobilized on glass carbon electrodes and their electrochemical behaviors for different charged redox systems were also investigated by using the cyclic voltammetry (CV) method. Results indicated that the density of surface negative charge on GO is much more than those on RGO and EGO. Furthermore, the electrochemical performances of electrodes modified with GO, RGO and EGO for detecting the model analyte Cu2+ by CV were compared. The results demonstrate that negative charge on the surface of graphene materials affects their performances as electrochemical sensors significantly.


2021 ◽  
Author(s):  
Nahid Askari ◽  
Navvabeh Salarizadeh ◽  
Mohammad Bagher Askari

Abstract A binary transition metal oxide based on nickel and iron (NiFe2O4) and hybridization of this nanomaterial with reduced graphene oxide (rGO) are synthesized by the hydrothermal method. X-ray diffraction (XRD), and Raman spectroscopy confirm the successful synthesis of these materials. Also, scanning electron microscope (SEM) and transmission electron microscope (TEM) images illustrated the particle morphology with the particle size of 20 nm. The synthesized material is then examined as a sensor on the surface of the glassy carbon electrode to detect a very small amount of rutin .Some electrochemical tests such as cyclic voltammetry, differential pulse voltammetry, impedance spectroscopy indicate the remarkable accuracy of this sensor and its operation in a relatively wide range of concentration of rutin (100 nM-100 µM). Considering the very good results, it seems the NiFe2O4-rGO can be considered as a new proposal in the development of accurate and inexpensive electrochemical sensors.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4247 ◽  
Author(s):  
Rita Petrucci ◽  
Isabella Chiarotto ◽  
Leonardo Mattiello ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
...  

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to – interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10−10 mol L−1 and 1.8 × 10−9 mol L−1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marla V. V. Satya Aditya ◽  
Srikanta Panda ◽  
Sankara Sarma V. Tatiparti

AbstractHydrogen uptake (H-uptake) is studied in ball milled Mg-B-electrochemically synthesized reduced graphene oxide (erGO) nanocomposites at PH2 ≈ 15 bar, ~ 320 °C. B/C (weight ratio): 0, ~ 0.09, ~ 0.36, ~ 0.90 are synthesized maintaining erGO≈10wt %. B occupies octahedral interstices within Mg unit cell—revealed by electron density maps. Persistent charge donations from Mg and B to C appear as Mg-C (~ 283.2 eV), B-C (~ 283.3–283.9 eV) interactions in C-1s core X-ray photoelectron spectroscopy (XPS) at all B/C. At B/C > 0.09, charge reception by B from Mg yields Mg-B interaction. This net charge acceptor role of B renders it electron-rich and does not alter Mg unit cell size significantly. Despite charge donation to both C and B, the Mg charge is <  + 2, resulting in long incubation times (> 5 h) at B/C > 0.09. At B/C≈0.09 the minimal Mg-B interaction renders B a charge donor, resulting in Mg-B repulsion and Mg unit cell expansion. Mg-C peak shift to lower binding energies (C-1s XPS), decreases incubation time to ~ 2.25 h and enhances H-uptake kinetics. Various atomic interactions influence the reduction of incubation time in H-uptake and increase its kinetics in the order: (Mg → C; B → C)B/C≈0.09, B: donor > (Mg → C)B/C=0 > (ternary Mg → B → C)B/C>0.09, B: acceptor.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


RSC Advances ◽  
2021 ◽  
Vol 11 (14) ◽  
pp. 7862-7872
Author(s):  
Behzad Mirzaei ◽  
Ali Zarrabi ◽  
Abdollah Noorbakhsh ◽  
Abbas Amini ◽  
Pooyan Makvandi

In this study, a sensitive electrochemical sensor was fabricated based on a beta-cyclodextrin–reduced graphene oxide (β-CD–rGO) nanocomposite for measuring curcumin concentration.


2021 ◽  
Vol 56 (13) ◽  
pp. 7982-7999
Author(s):  
Fathi S. Awad ◽  
Khaled M. AbouZied ◽  
Ayyob M. Bakry ◽  
Weam M. Abou El-Maaty ◽  
Ahmad M. El-Wakil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document