scholarly journals Local Wireless Sensor Networks Positioning Reliability Under Sensor Failure

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1426 ◽  
Author(s):  
Javier Díez-González ◽  
Rubén Álvarez ◽  
Natalia Prieto-Fernández ◽  
Hilde Perez

Local Positioning Systems are collecting high research interest over the last few years. Its accurate application in high-demanded difficult scenarios has revealed its stability and robustness for autonomous navigation. In this paper, we develop a new sensor deployment methodology to guarantee the system availability in case of a sensor failure of a five-node Time Difference of Arrival (TDOA) localization method. We solve the ambiguity of two possible solutions in the four-sensor TDOA problem in each combination of four nodes of the system by maximizing the distance between the two possible solutions in every target possible location. In addition, we perform a Genetic Algorithm Optimization in order to find an optimized node location with a trade-off between the system behavior under failure and its normal operating condition by means of the Cramer Rao Lower Bound derivation in each possible target location. Results show that the optimization considering sensor failure enhances the average values of the convergence region size and the location accuracy by 31% and 22%, respectively, in case of some malfunction sensors regarding to the non-failure optimization, only suffering a reduction in accuracy of less than 5% under normal operating conditions.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2458
Author(s):  
Paula Verde ◽  
Javier Díez-González ◽  
Rubén Ferrero-Guillén ◽  
Alberto Martínez-Gutiérrez ◽  
Hilde Perez

Local Positioning Systems (LPS) have become an active field of research in the last few years. Their application in harsh environments for high-demanded accuracy applications is allowing the development of technological activities such as autonomous navigation, indoor localization, or low-level flights in restricted environments. LPS consists of ad-hoc deployments of sensors which meets the design requirements of each activity. Among LPS, those based on temporal measurements are attracting higher interest due to their trade-off among accuracy, robustness, availability, and costs. The Time Difference of Arrival (TDOA) is extended in the literature for LPS applications and consequently we perform, in this paper, an analysis of the optimal sensor deployment of this architecture for achieving practical results. This is known as the Node Location Problem (NLP) and has been categorized as NP-Hard. Therefore, heuristic solutions such as Genetic Algorithms (GA) or Memetic Algorithms (MA) have been applied in the literature for the NLP. In this paper, we introduce an adaptation of the so-called MA-Solis Wets-Chains (MA-SW-Chains) for its application in the large-scale discrete discontinuous optimization of the NLP in urban scenarios. Our proposed algorithm MA-Variable Neighborhood Descent-Chains (MA-VND-Chains) outperforms the GA and the MA of previous proposals for the NLP, improving the accuracy achieved by 17% and by 10% respectively for the TDOA architecture in the urban scenario introduced.


2021 ◽  
Vol 167 ◽  
pp. 112350
Author(s):  
Ilenia Catanzaro ◽  
Pietro Arena ◽  
Salvatore Basile ◽  
Gaetano Bongiovì ◽  
Pierluigi Chiovaro ◽  
...  

Author(s):  
Brittany Goldsmith ◽  
Elizabeth Foyt ◽  
Madhu Hariharan

As offshore field developments move into deeper water, one of the greatest challenges is in designing riser systems capable of overcoming the added risks of more severe environments, complicated well requirements and uncertainty of operating conditions. The failure of a primary riser component could lead to unacceptable consequences, including environmental damage, lost production and possible injury or loss of human life. Identification of the risks facing riser systems and management of these risks are essential to ensure that riser systems operate without failure. Operators have recognized the importance of installing instrumentation such as global positioning systems (GPS), vessel motion measurement packages, wind and wave sensors and Acoustic Doppler Current Profiler (ADCP) units to monitor vessel motions and environmental conditions. Additionally, high precision monitoring equipment has been developed for capturing riser response. Measured data from these instruments allow an operator to determine when the limits of acceptable response, predicted by analysis or determined by physical limitations of the riser components, have been exceeded. Regular processing of measured data through automated routines ensures that integrity can be quickly assessed. This is particularly important following extreme events, such as a hurricane or loop current. High and medium alert levels are set for each parameter, based on design analysis and operating data. Measured data is compared with these alert levels, and when an alert level is reached, further response evaluation or inspection of the components in question is recommended. This paper will describe the role of offshore monitoring in an integrity management program and discuss the development of alert levels based on potential failure modes of the riser systems. The paper will further demonstrate how this process is key for an effective integrity management program for deepwater riser systems.


2021 ◽  
pp. 153186
Author(s):  
Yang-Hyun Koo ◽  
Jae-Ho Yang ◽  
Dong-Seok Kim ◽  
Dong-Joo Kim ◽  
Chang-Hwan Shin ◽  
...  

2013 ◽  
Vol 310 ◽  
pp. 557-559 ◽  
Author(s):  
Li Ji ◽  
Xiao Fei Lian

For a blow-off tunnel running, there is the large delay and lag issues. We build a mathematical model of the wind tunnel Mach number control by the test modeling method, then analyse the pros and cons of various control methods based on BP neural network control algorithm. Put forward genetic algorithm optimization neural network adaptive control method to solve the large inertia of the wind tunnel system, and large delay. A large number of simulation studies, run a variety of operating conditions for the wind tunnel simulation proved that the improved adaptive neural network PID control method is reasonable and effective.


Sign in / Sign up

Export Citation Format

Share Document