scholarly journals Enhancing Energy Saving in Smart Farming through Aggregation and Partition Aware IoT Routing Protocol

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2760 ◽  
Author(s):  
Karim Fathallah ◽  
Mohamed Abid ◽  
Nejib Ben Hadj-Alouane

Internet of things (IoT) for precision agriculture or Smart Farming (SF) is an emerging area of application. It consists essentially of deploying wireless sensor networks (WSNs), composed of IP-enabled sensor nodes, in a partitioned farmland area. When the surface, diversity, and complexity of the farm increases, the number of sensing nodes increases, generating heavy exchange of data and messages, and thus leading to network congestion, radio interference, and high energy consumption. In this work, we propose a novel routing algorithm extending the well known IPv6 Routing Protocol for Low power and Lossy Networks (RPL), the standard routing protocol used for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). It is referred to as the Partition Aware-RPL (PA-RPL) and improves the performance of the standard RPL. In contrast to RPL, the proposed technique builds a routing topology enabling efficient in-network data aggregation, hence dramatically reducing data traffic through the network. Performance analysis of a typical/realistic precision agriculture case, considering the potato pest prevention from the well-known late blight disease, shows that PA-RPL improves energy saving up to 40 % compared to standard RPL.

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3814
Author(s):  
Frederico O. Sales ◽  
Yelco Marante ◽  
Alex B. Vieira ◽  
Edelberto Franco Silva

Sensor nodes are small, low-cost electronic devices that can self-organize into low-power networks and are susceptible to data packet loss, having computational and energy limitations. These devices expand the possibilities in many areas, like agriculture and urban spaces. In this work, we consider an IoT environment for monitoring a coffee plantation in precision agriculture. We investigate the energy consumption under low-power and lossy networks considering three different network topologies and an Internet Engineering Task Force (IETF) standardized Low-power and Lossy Network (LLN) routing protocol, the Routing Protocol for LLNs (RPL). For RPL, each secondary node selects a better parent according to some Objective Functions (OFs). We conducted simulations using Contiki Cooja 3.0, where we considered the Expected Transmission Count (ETX) and hop-count metric (HOP) metrics to evaluate energy consumption for three distinct topologies: tree, circular, and grid. The simulation results show that the circular topology had the best (lowest) energy consumption, being 15% better than the grid topology and 30% against the tree topology. The results help the need to improve the evolution of RPL metrics and motivate the network management of the topology.


2021 ◽  
Author(s):  
Aryan Mohammadi Pasikhani ◽  
Andrew John Clark ◽  
Prosanta Gope

<p>The Routing Protocol for low power Lossy networks (RPL) is a critical operational component of low power wireless personal area networks using IPv6 (6LoWPANs). In this paper we propose a Reinforcement Learning (RL) based IDS to detect various attacks on RPL in 6LoWPANs, including several unaddressed by current research. The proposed scheme can also detect previously unseen attacks and the presence of mobile intruders. The scheme is well suited to the resource constrained environments of our target networks.</p><br>


2019 ◽  
Vol 8 (3) ◽  
pp. 70-93 ◽  
Author(s):  
S.Sankar ◽  
P.Srinivasan

Increasing the lifetime of low power and lossy networks (LLN) is a major challenge, as the nodes have low power, low memory, and low processing capacity. Clustering is a technique used to minimize the energy consumption of sensor nodes. This article proposes a fuzzy sets-based cluster routing protocol (FC-RPL) to extend the network lifetime in LLN. It has three processes: cluster formation, cluster head selection, and cluster head parent selection. It forms the clusters based on the Euclidean distance. It applies the fuzzy set over the metrics residual energy, number of neighbors and centrality, to select the cluster head in each cluster. The cluster head node chooses the best parent node in the DODAG for data transfer. The simulation is performed using COOJA simulator. The simulation result shows that FC-RPL extends the network lifetime by 15-25% and increases the packet delivery ratio by 2-6%.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Chuang Ma ◽  
Jang-Ping Sheu ◽  
Chao-Xiang Hsu

In wireless sensor networks (WSNs), the presence of congestion increases the ratio of packet loss and energy consumption and reduces the network throughput. Particularly, this situation will be more complex in Internet of Things (IoT) environment, which is composed of thousands of heterogeneous nodes. RPL is an IPv6 routing protocol in low power and lossy networks standardized by IETF. However, the RPL can induce problems under network congestion, such as frequently parent changing and throughput degradation. In this paper, we address the congestion problem between parent nodes and child nodes in RPL-enabled networks, which typically consist of low power and resource constraint devices. To mitigate the effect of network congestion, we design a parent-change procedure by game theory strategy, by which the child nodes can change next hop neighbors toward the sink. Comparing to the ContikiRPL implementation, the simulation results show that our protocol can achieve more than two times improvement in throughput and reduce packet loss rate with less increasing of average hop count.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4591
Author(s):  
Srividhya Swaminathan ◽  
Suresh Sankaranarayanan ◽  
Sergei Kozlov ◽  
Joel J. P. C. Rodrigues

Forest fire monitoring is very much needed for protecting the forest from any kind of disaster or anomaly leading to the destruction of the forest. Now, with the advent of Internet of Things (IoT), a good amount of research has been done on energy consumption, coverage, and other issues. These works did not focus on forest fire management. The IoT-enabled environment is made up of low power lossy networks (LLNs). For improving the performance of routing protocol in forest fire management, energy-efficient routing protocol for low power lossy networks (E-RPL) was developed where residual power was used as an objective function towards calculating the rank of the parent node to form the destination-oriented directed acyclic graph (DODAG). The challenge in E-RPL is the scalability of the network resulting in a long end-to-end delay and less packet delivery. Additionally, the energy of sensor nodes increased with different transmission range. So, for obviating the above-mentioned drawbacks in E-RPL, compressed data aggregation and energy-based RPL routing (CAA-ERPL) is proposed. The CAA-ERPL is compared with E-RPL, and the performance is analyzed resulting in reduced packet transfer delay, less energy consumption, and increased packet delivery ratio for 10, 20, 30, 40, and 50 nodes. This has been evaluated using a Contiki Cooja simulator.


2021 ◽  
Author(s):  
Aryan Mohammadi Pasikhani ◽  
Andrew John Clark ◽  
Prosanta Gope

<p>The Routing Protocol for low power Lossy networks (RPL) is a critical operational component of low power wireless personal area networks using IPv6 (6LoWPANs). In this paper we propose a Reinforcement Learning (RL) based IDS to detect various attacks on RPL in 6LoWPANs, including several unaddressed by current research. The proposed scheme can also detect previously unseen attacks and the presence of mobile intruders. The scheme is well suited to the resource constrained environments of our target networks.</p><br>


Author(s):  
Yibo Chen ◽  
Jean-Pierre Chanet ◽  
Kun Mean Hou ◽  
Hong Ling Shi

The routing protocol for low power and lossy network (RPL) started to be designed by the ROLL working group of IETF since the year of 2008. Until the RFC6550 was released, this standard with its routing algorithms and four application scenarios, such as home and building automation, industrial control, and urban environment, have been grounded. As a main jigsaw of the paradigm of the Internet of Things (IoT), RPL plays the major role and has become an impressed technical tendency in the field of wireless communication. However, it is still very difficult to find effective approaches to simulate and evaluate RPL’s behaviors and other extensions of its applicability, especially in the domain of precision agriculture. Notice that wireless sensor network (WSN) has been deployed a wide variety of wireless sensing devices, and should be one valued supported part of the promising IoT ecosystem. In this paper, first the authors provide a brief presentation of the related protocols including their standardization, the existing implementations, and a group of simulation experiment results obtained from the RPL capable COOJA simulator with its developed modules. Second, the authors then focus on the utilization of this protocol in the agricultural low power and lossy network (A-LLN) area and propose their dedicated instances hybrid network architecture to meet its specific requirement. Moreover, the Web of things (WoT), a trend and new vision of IoT, is appended in the authors’ proposal to provide a novel dimension in design of A-LLN since it enables a full interoperability with current web application and higher efficiency of development. As a conclusion, the authors summarized their ongoing work and future solutions of the current technology issues.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Vinay Kumar ◽  
Sudarshan Tiwari

6LoWPANs (IPv6-based Low-Power Personal Area Networks) are formulated by devices that are compatible with the IEEE 802.15.4 standard. To moderate the effects of network mobility, the Internet Protocol (IP) does not calculate routes; it is left to a routing protocol, which maintains routing tables in the routers. 6LowPAN uses an adaptation layer between the network (IPv6) and data link layer (IEEE802.15.4 MAC) to fragment and reassemble IPv6 packets. The routing in 6LoWPAN is primarily divided on the basis of routing decision taken on adaptation or network layer. The objective of this paper is to present a state-of-the-art survey of existing routing protocols: LOAD, M-LOAD, DYMO-Low, Hi-Low, Extended Hi-Low, and S-AODV. These routing protocols have compared on the basis of different metric like energy consumption, memory uses, mobility, scalability, routing delay, an RERR message, a Hello message, and local repair. We have also presented the taxonomy of routing requirement; parameter for evaluating routing algorithm, and it was found that the routing protocol has its own advantages depending upon the application where it is used.


Sign in / Sign up

Export Citation Format

Share Document