scholarly journals A POI and LST Adjusted NTL Urban Index for Urban Built-Up Area Extraction

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2918 ◽  
Author(s):  
Fei Li ◽  
Qingwu Yan ◽  
Zhengfu Bian ◽  
Baoli Liu ◽  
Zhenhua Wu

Nighttime light (NTL) images have been broadly applied to extract urban built-up areas in recent years. However, the typical NTL images provided by Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) and National Polar-Orbiting Partnership’s Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) have the drawbacks of low resolution and blooming effect, which bring difficulty for the application of them in urban built-up area extraction. Therefore, this paper proposes the POI (point of interest) and LST (land surface temperature) adjusted NTL urban index (PLANUI) to extract the urban built-up areas with high accuracy. PLANUI is the first urban index to integrate POI and NTL for urban built-up area extraction. In this paper, NPP/VIIRS and Luojia 1-01 images were introduced as the original NTL data and the vegetation adjusted NTL urban index (VANUI) was selected as the comparison item. The threshold method was utilized to extract urban built-up areas from these data. The results show that: (1) Based on the comparison with the reference data, the PLANUI can make up the shortcoming of low resolution and the blooming effect of NTL effectively. (2) Compared with the VANUI, the PLANUI can significantly improve the accuracy of the urban built-up areas extracted and characterize urban features. (3) According to the results based on NPP/VIIRS and Luojia 1-01 images, the PLANUI has extensive applicability, both for regions with different degrees of economic development and NTL data with different resolutions. PLANUI can enhance the features of urban built-up areas with social sensing data and natural remote sensing data, which helps to weaken the NTL blooming effect and improve the extraction accuracy. PLANUI can provide an effective approach for urban built-up area extraction, which plays a certain guiding role for the study of urban structure, urban expansion, and urban planning and governance.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1276-1279 ◽  
Author(s):  
Yin Tai Na

The three commonly used remote sensing land surface temperature retrieval methods are described, namely single-window algorithm, split window algorithm and multi-channel algorithm, which have their advantages and disadvantages. The land surface temperature (LST) of study area was retrieved with multi-source remote sensing data. LST of study area was retrieved with the split window algorithm on January 10, 2003 and November 19, 2003 which is comparatively analyzed with the LST result of ETM+data with the single-window algorithm and the LST result of ASTER data with multi channel algorithm in the same period. The results show that land surface temperature of different land features are significantly different, where the surface temperature of urban land is the highest, and that of rivers and lakes is the lowest, followed by woodland. It is concluded that the expansion of urban green space and protection of urban water can prevent or diminish the urban heat island.


2020 ◽  
Vol 12 (16) ◽  
pp. 2660
Author(s):  
Philip Marzahn ◽  
Swen Meyer

Land Surface Models (LSM) have become indispensable tools to quantify water and nutrient fluxes in support of land management strategies or the prediction of climate change impacts. However, the utilization of LSM requires soil and vegetation parameters, which are seldom available in high spatial distribution or in an appropriate temporal frequency. As shown in recent studies, the quality of these model input parameters, especially the spatial heterogeneity and temporal variability of soil parameters, has a strong effect on LSM simulations. This paper assesses the potential of microwave remote sensing data for retrieving soil physical properties such as soil texture. Microwave remote sensing is able to penetrate in an imaged media (soil, vegetation), thus being capable of retrieving information beneath such a surface. In this study, airborne remote sensing data acquired at 1.3 GHz and in different polarization is utilized in conjunction with geostatistics to retrieve information about soil texture. The developed approach is validated with in-situ data from different field campaigns carried out over the TERENO test-site “North-Eastern German Lowland Observatorium”. With the proposed approach a high accuracy of the retrieved soil texture with a mean RMSE of 2.42 (Mass-%) could be achieved outperforming classical deterministic and geostatistical approaches.


2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


2020 ◽  
Vol 12 (24) ◽  
pp. 4139
Author(s):  
Ruirui Wang ◽  
Wei Shi ◽  
Pinliang Dong

The nighttime light (NTL) on the surface of Earth is an important indicator for the human transformation of the world. NTL remotely sensed data have been widely used in urban development, population estimation, economic activity, resource development and other fields. With the increasing use of artificial lighting technology in agriculture, it has become possible to use NTL remote sensing data for monitoring agricultural activities. In this study, National Polar Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) NTL remote sensing data were used to observe the seasonal variation of artificial lighting in dragon fruit cropland in Binh Thuan Province, Vietnam. Compared with the statistics of planted area, area having products and production of dragon fruit by district in the Statistical Yearbook of Binh Thuan Province 2018, values of the mean and standard deviation of NTL brightness have significant positive correlations with the statistical data. The results suggest that the NTL remotely sensed data could be used to reveal some agricultural productive activities such as dragon fruits production accurately by monitoring the seasonal artificial lighting. This research demonstrates the application potential of NTL remotely sensed data in agriculture.


Sign in / Sign up

Export Citation Format

Share Document