scholarly journals Control Plane Optimisation for an SDN-Based WBAN Framework to Support Healthcare Applications

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4200
Author(s):  
Khalid Hasan ◽  
Khandakar Ahmed ◽  
Kamanashis Biswas ◽  
Md. Saiful Islam ◽  
A. S. M. Kayes ◽  
...  

Software-Defined Networking (SDN) offers an abstract view of the network and assists network operators to control the network traffic and the associated network resources more effectively. For the past few years, SDN has shown a lot of merits in diverse fields of applications, an important one being the Wireless Body Area Network (WBAN) for healthcare services. With the amalgamation of SDN with WBAN (SDWBAN), the patient monitoring and management system has gained much more flexibility and scalability compared to the conventional WBAN. However, the performance of the SDWBAN framework largely depends on the controller which is a core element of the control plane. The reason is that an optimal number of controllers assures the satisfactory level of performance and control of the network traffic originating from the underlying data plane devices. This paper proposes a mathematical model to determine the optimal number of controllers for the SDWBAN framework in healthcare applications. To achieve this goal, the proposed mathematical model adopts the convex optimization method and incorporates three critical SDWBAN factors in the design process: number of controllers, latency and number of SDN-enabled switches (SDESW). The proposed analytical model is validated by means of simulations in Castalia 3.2 and the outcomes indicate that the network achieves high level of Packet Delivery Ratio (PDR) and low latency for optimal number of controllers as derived in the mathematical model.

Author(s):  
Shilpa Shinde ◽  
Santosh Sonavane

Background and objective: In the Wireless Body Area Network (WBAN) sensors are placed on the human body; which has various mobility patterns like seating, walking, standing and running. This mobility typically assisted with hand and leg movements on which most of the sensors are mounted. Previous studies were largely focused on simulations of WBAN mobility without focusing much on hand and leg movements. Thus for realistic studies on performance of the WBAN, it is important to consider hand and leg movements. Thus, an objective of this paper is to investigate an effect of the mobility patterns with hand movements on the throughput of the WBAN. Method: The IEEE 802.15.6 requirements are considered for WBAN design. The WBAN with star topology is used to connect three sensors and a hub. Three types of mobility viz. standing, walking and running with backward and forward hand movements is designed for simulation purpose. The throughput analysis is carried out with the three sets of simulations with standing, walking and running conditions with the speed of 0 m/s, 0.5 m/s and 3 m/s respectively. The data rate was increased from 250 Kb to 10000 Kb with AODV protocol. It is intended to investigate the effect of the hand movements and the mobility conditions on the throughput. Simulation results are analyzed with the aid of descriptive statistics. A comparative analysis between the simulated model and a mathematical model is also introduced to get more insight into the data. Results: Simulation studies showed that as the data rate is increased, throughput is also increased for all mobility conditions however, this increasing trend was discontinuous. In the standing (static) position, the throughput is found to be higher than mobility (dynamic) condition. It is found that, the throughput is better in the running condition than the walking condition. Average values of the throughput in case of the standing condition were more than that of the dynamic conditions. To validate these results, a mathematical model is created. In the mathematical model, a same trend is observed. Conclusion: Overall, it is concluded that the throughput is decreased due to mobility of the WBAN. It is understood that mathematical models have given more insight into the simulation data and confirmed the negative effect of the mobility conditions on throughput. In the future, it is proposed to investigate effect of interference on the designed network and compare the results.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 11413-11422 ◽  
Author(s):  
Taiyang Wu ◽  
Fan Wu ◽  
Jean-Michel Redoute ◽  
Mehmet Rasit Yuce

2020 ◽  
Author(s):  
Nithya B ◽  
Naveen Ranjan ◽  
Justin Gopinath A

Abstract A Wireless Body Area Network (WBAN) is the composition of a group of energy-efficient, miniature, invasive/non-invasive, light-weighted sensors that monitor human body health conditions for early detection and treatment for life-threatening diseases. Due to the stringent demands of WBAN, such as energy efficiency, reliability and low delay, the development of an efficient contention control algorithm is exceptionally crucial that aims to maximize throughput by reducing collisions. In this context, this paper proposes an adaptive algorithm, namely, Prioritization and Contention Control (PCC) algorithm, to minimize collisions, latency and energy consumption. The first phase of the proposed algorithm prioritizes sensors using run-time metrics to grant channel access only for the potential nodes to send their data. It leads to a lesser number of collisions among sensors, thereby reducing retransmission attempts. In the second phase, the Contention Window (CW) size is predicted using queue length and collision rate that accurately mimic the current channel status. The dynamic estimation of CW aids in minimizing channel access delay, collisions and energy consumption, thereby enhancing overall network performance. The performance of the proposed PCC algorithm is validated with the 2D Markov model and NS2 simulation in terms of throughput, packet delivery ratio, delay and remaining energy.


2021 ◽  
Author(s):  
N Arun Vignesh ◽  
Kanithan S ◽  
Jana S ◽  
Gokul Prasad C ◽  
Konguvel E ◽  
...  

Abstract We propose in this paper a reduction in the size of wearable antennas on silicon (Si) for medicinal frameworks and Internet of things (IoT). This research also introduces one more type of dynamic patch antenna designed in favor of speech-enhanced healthcare applications. The most significant impediment to the adoption of smart correspondence and medical services frameworks is voice-enabled IoT. The primary objective of a body area network (BAN) is to give ceaselessly clinical information to the doctors. Actually wireless body area network is flexible, dense, trivial and less expensive. On the other hand the main disadvantage is low efficiency for small printed antenna. Microstrip silicon antenna recurrence is changed because of ecological conditions, distinctive reception apparatus areas and diverse framework activity modes. By using tunable antenna the efficiency of bandwidth usage can be increased. Amplifiers are associated with the feed line of antenna in order to build its dynamic range. In this study, a dynamic polarized antenna is constructed, analysed and attempted for fabrication. The gain of the antenna is 13 ± 2dB for the frequency range of 390 to 610MHz. The output of the polarized antenna is roughly 19 dBm. At different environmental conditions the performance and ability to control the antenna could vary. To achieve stable performance, we have used varactor diode and voltage controlled diode. This silicon wearable antenna can be fabricated and tested for many medical applications like health monitoring system, pacemakers etc. Furthermore, Micromachining techniques can be used to lower the practical dielectric constant of Silicon and hence improve radiation efficiency.


Author(s):  
Vajubunnisa Begum R ◽  
Dharmarajan K

The Tele-Health WBAN (Wireless Body Area Network) Model for patients required more attention especially old age people’s healthcare services in Low-cost Internet of Things (IoT) Devices. The advancements in telemedicine have increased drastically towards wearable sensor devices and mobile phone-based applications in the last few years. The study presents the integration of IoT and wearable sensor devices in the Tele - Health system developed for tracking heart patients among the elderly people and also to prevent them from stroke. In order to meet the demand for old age people healthcare services, it is very much essential to provide assistance in cardiac disease diagnosis and suggest medication in their home with comfortable environment. Hence, they can avoid frequent visit to hospitals and long stays.


2019 ◽  
Vol 5 (11) ◽  
pp. 22-28
Author(s):  
Vineeta Shrivastava ◽  
Mayank Namdev

Wireless Body Area Network (WBAN) is a new trend in the technology that provides remote mechanism to monitor and collect patient’s health record data using wearable sensors. It is widely recognized that a high level of system security and privacy play a key role in protecting these data when being used by the healthcare professionals and during storage to ensure that patient’s records are kept safe from intruder’s danger. It is therefore of great interest to discuss security and privacy issues in WBANs. In this paper, we reviewed WBAN communication architecture, security and privacy requirements and security threats and the primary challenges in WBANs to these systems based on the latest standards and publications. This paper also covers the state-of-art security measures and research in WBAN.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 336
Author(s):  
Shahzad Khan ◽  
Waseem Iqbal ◽  
Abdul Waheed ◽  
Gulzar Mehmood ◽  
Shawal Khan ◽  
...  

The ever-growing ecosystem of the Internet of Things (IoT) integrating with the ever-evolving wireless communication technology paves the way for adopting new applications in a smart society. The core concept of smart society emphasizes utilizing information and communication technology (ICT) infrastructure to improve every aspect of life. Among the variety of smart services, eHealth is at the forefront of these promises. eHealth is rapidly gaining popularity to overcome the insufficient healthcare services and provide patient-centric treatment for the rising aging population with chronic diseases. Keeping in view the sensitivity of medical data, this interfacing between healthcare and technology has raised many security concerns. Among the many contemporary solutions, attribute-based encryption (ABE) is the dominant technology because of its inherent support for one-to-many transfer and fine-grained access control mechanisms to confidential medical data. ABE uses costly bilinear pairing operations, which are too heavy for eHealth’s tiny wireless body area network (WBAN) devices despite its proper functionality. We present an efficient and secure ABE architecture with outsourcing intense encryption and decryption operations in this work. For practical realization, our scheme uses elliptic curve scalar point multiplication as the underlying technology of ABE instead of costly pairing operations. In addition, it provides support for attribute/users revocation and verifiability of outsourced medical data. Using the selective-set security model, the proposed scheme is secure under the elliptic curve decisional Diffie–Hellman (ECDDH) assumption. The performance assessment and top-ranked value via the help of fuzzy logic’s evaluation based on distance from average solution (EDAS) method show that the proposed scheme is efficient and suitable for access control in eHealth smart societies.


Wireless body area network (WBAN) being a sub-domain of wireless sensor network (WSN) is a new emerging technology for healthcare applications. A WBAN consists of low-power tiny wireless nodes placed on or around the human body that continuously observe vital health signs of a patient. These sensors are capable of sending information of physiological parameters taken from human body to other devices for diagnosis procedures and prescription. WBAN provides ubiquitous healthcare services and enables greater mobility without restricting human normal activities, as the medical personnel can observe the patient health conditions based on the data received through the wireless network. This research work provides a WBAN based healthcare monitoring system that can provide the electrocardiogram (ECG), heartbeat, and human body temperature information. The wireless transmission of the received data from human body is performed by using Zigbee IEEE802.15.4 communication standard. The physiological data will be communicated to remote medical server where data is stored and analyzed. In case any disease is diagnosed, medical personnel can provide immediate assistance to the patients.


Author(s):  
Hadda Ben Elhadj ◽  
Lamia Chaari ◽  
Saadi Boudjit ◽  
Lotfi Kamoun

In this paper, the authors present a Node Management Entity (NME) and a Hub Management Entity (HME) architectures based on the Wireless Body Area Network (WBAN) standard. The proposed HME and NME combine cross and modular design architecture to ensure network reliability and enhance the WBAN Quality of Service (QoS). Furthermore, the authors propose an Adaptive Two-hop Routing protocol, termed ATR, a simple but yet efficient algorithm to provide reliable data dissemination in WBANs. The proposed ATR is evaluated under layered architecture and NME and HME entities. Simulation results show that both entities perform well 802.15.6 standard and WBAN QoS requirements than layered architecture.


Sign in / Sign up

Export Citation Format

Share Document