scholarly journals High-Efficiency Inscription of Fiber Bragg Grating Array with High-Energy Nanosecond-Pulsed Laser Talbot Interferometer

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4307
Author(s):  
Zhe Zhang ◽  
Baijie Xu ◽  
Jun He ◽  
Maoxiang Hou ◽  
Weijia Bao ◽  
...  

A high-energy nanosecond-pulsed ultraviolet (UV) laser Talbot interferometer for high-efficiency, mass production of fiber Bragg grating (FBG) array was experimentally demonstrated. High-quality FBG arrays were successfully inscribed in both H2-free and H2-loaded standard single-mode fibers (SMFs) with high inscription efficiency and excellent reproducibility. Compared with the femtosecond pulse that had a coherent length of several tens of micrometers, a longer coherent length (~10 mm) of the employed laser rendered a wider FBG wavelength versatility over 700 nm band (1200–1900 nm) without the need for optical path difference (OPD) compensation. Dense FBG array with center wavelength separation of ~0.4 nm was achieved and more than 1750 FBGs with separated center wavelength could be inscribed in a single H2-free or H2-loaded SMF in theory, which is promising for mass production of FBG arrays in industry. Moreover, precise focusing of laser beam was superfluous for the proposed system due to the high energy density of pulse. The proposed FBG inscription system was promising for industrialization production of dense FBG arrays.

2022 ◽  
Vol 12 (2) ◽  
pp. 886
Author(s):  
Hun-Kook Choi ◽  
Young-Jun Jung ◽  
Bong-Ahn Yu ◽  
Jae-Hee Sung ◽  
Ik-Bu Sohn ◽  
...  

This paper demonstrates the fabrication of radiation-resistant fiber Bragg grating (FBG) sensors using infrared femtosecond laser irradiation. FBG sensors were written inside acrylate-coated fluorine-doped single-mode specialty optical fibers. We detected the Bragg resonance at 1542 nm. By controlling the irradiation conditions, we improved the signal strength coming out from the FBG sensors. A significant reduction in the Bragg wavelength shift was detected in the fabricated FBG sensors for a radiation dose up to 105 gray, indicating excellent radiation resistance capabilities. We also characterized the temperature sensitivity of the radiation-resistant FBG sensors and detected outstanding performance.


2018 ◽  
Author(s):  
Saiid Kassaee ◽  
Adewale Odukomaiya ◽  
Ahmad Abu-Heiba ◽  
Xiaobing Liu ◽  
Matthew M. Mench ◽  
...  

With the increasing penetration of renewable energy, the need for advanced flexible/scalable energy storage technologies with high round-trip efficiency (RTE) and high energy density has become critical. In this paper, a techno-economic model of a novel energy storage technology developed by the Oak Ridge National Laboratory (ORNL) is presented and used to estimate the technology’s capital cost. Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage technology with high efficiency which can store energy via input of electricity and heat and supply dispatchable electricity. GLIDES stores energy by compressing and expanding a gas using a liquid piston. GLIDES performance has been extensively studied analytically and experimentally. This study aims to develop a comprehensive combined performance and cost modeling environment. With the desired system storage capacity kilowattage, storage time (hours), and an initial RTE guess as inputs, the model optimizes the selection of system components to minimize the capital cost. The techno-economic model described in this paper can provide preliminary cost estimates and corresponding performance for various system sizes and storage times.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuolin Tang ◽  
Mengming Yuan ◽  
Huali Zhu ◽  
Guang Zeng ◽  
Jun Liu ◽  
...  

Nowadays, Li–CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li–CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li–CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g−1, a low overpotential of 1.25 V, and a longer cycle performance.


2017 ◽  
Author(s):  
Rudy Desmarchelier ◽  
Romain Cotillard ◽  
Nicolas Roussel ◽  
Steven Armiroli ◽  
Guillaume Laffont

2021 ◽  
Vol 18 (3) ◽  
pp. 035103
Author(s):  
Xiaofan Zhao ◽  
Xin Tian ◽  
Qihao Hu ◽  
Binyu Rao ◽  
Meng Wang ◽  
...  

2018 ◽  
Vol 32 (24) ◽  
pp. 1850266
Author(s):  
Min Luo ◽  
Wei Cao ◽  
Haiyan Chen

A fiber ring-cavity laser based on InP/InGaAsP multi-quantum wells semiconductor optical amplifier is proposed and experimentally demonstrated. The laser uses InP/InGaAsP multi-quantum as well as the gain medium and fiber Bragg grating as the wavelength selector. It’s demonstrated that the center wavelength of the output amplified spontaneous emission spectrum for the InP/InGaAsP multiple-quantum wells appears blue shift when its injection current increases. A lasing at central wavelength of 1549.66 nm with the maximum output power of 1.524 mW is obtained with electro-optical efficiency of 1.1% at injection current of 220 mA and the fiber Bragg grating operating temperature of 23[Formula: see text]C. The threshold injection current of the laser is 78 mA. When the operating temperature of fiber Bragg grating increases from 8[Formula: see text]C to 28[Formula: see text]C, the center wavelength of output laser increases from 1549.27 to 1549.59 nm. It shows that the laser has good temperature stability.


NANO ◽  
2018 ◽  
Vol 13 (01) ◽  
pp. 1850013 ◽  
Author(s):  
Chuanyin Xiong ◽  
Tiehu Li ◽  
Tingkai Zhao ◽  
Alei Dang ◽  
Xianglin Ji ◽  
...  

In this paper, a facile method is designed to fabricate three-dimensional (3D) graphene (GR)/manganese dioxide (MnO2) nanowall electrode material. The 3D GR/MnO2 hybrid is prepared by a combination of electrochemical deposition (ELD) and electrophoresis deposition (EPD), followed by thermal reduction (TR). Firstly, the 3D graphene oxide (GO)/MnO2 hybrid is obtained by the ELD–EPD method. Secondly, the 3D GR/MnO2 hybrid is obtained through hydrogen reduction at a certain temperature. The as-fabricated hybrid has been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The electrochemical properties have been also measured by cyclic voltammetry. The results showed that the 3D GR/MnO2 nanowalls hybrid has a high specific capacitance of 266.75[Formula: see text]Fg[Formula: see text] and a high energy density of 25.36[Formula: see text]Whkg[Formula: see text]. Moreover, a high specific capacitance (240.15[Formula: see text]Fg[Formula: see text]) at a high scan rate of 200[Formula: see text]mVs[Formula: see text] (90% capacity retention) has been also obtained. Additionally, the hybrid can serve directly as the electrodes of supercapacitor without adding binder. This work provides a novel road to fabricate a binder-free 3D GR-based hybrid for high-performance energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document