scholarly journals Pine Cone Detection Using Boundary Equilibrium Generative Adversarial Networks and Improved YOLOv3 Model

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4430 ◽  
Author(s):  
Ze Luo ◽  
Huiling Yu ◽  
Yizhuo Zhang

The real-time detection of pine cones in Korean pine forests is not only the data basis for the mechanized picking of pine cones, but also one of the important methods for evaluating the yield of Korean pine forests. In recent years, there has been a certain number of detection accuracy for image processing of fruits in trees using deep-learning methods, but the overall performance of these methods has not been satisfactory, and they have never been used in the detection of pine cones. In this paper, a pine cone detection method based on Boundary Equilibrium Generative Adversarial Networks (BEGAN) and You Only Look Once (YOLO) v3 mode is proposed to solve the problems of insufficient data set, inaccurate detection result and slow detection speed. First, we use traditional image augmentation technology and generative adversarial network BEGAN to implement data augmentation. Second, we introduced a densely connected network (DenseNet) structure in the backbone network of YOLOv3. Third, we expanded the detection scale of YOLOv3, and optimized the loss function of YOLOv3 using the Distance-IoU (DIoU) algorithm. Finally, we conducted a comparative experiment. The experimental results show that the performance of the model can be effectively improved by using BEGAN for data augmentation. Under same conditions, the improved YOLOv3 model is better than the Single Shot MultiBox Detector (SSD), the faster-regions with convolutional neural network (Faster R-CNN) and the original YOLOv3 model. The detection accuracy reaches 95.3%, and the detection efficiency is 37.8% higher than that of the original YOLOv3.

2021 ◽  
Vol 11 (14) ◽  
pp. 6368
Author(s):  
Fátima A. Saiz ◽  
Garazi Alfaro ◽  
Iñigo Barandiaran ◽  
Manuel Graña

This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation.


2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2021 ◽  
Author(s):  
Dinh Tan Nguyen ◽  
Cao Truong Tran ◽  
Trung Thanh Nguyen ◽  
Cao Bao Hoang ◽  
Van Phu Luu ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Keke Gao ◽  
Wenbin Feng ◽  
Xia Zhao ◽  
Chongchong Yu ◽  
Weijun Su ◽  
...  

The spontaneous combustion of residual coals in the mined-out area tends to cause an explosion, which is one kind of severe thermodynamic compound disaster of coal mines and leads to serious losses to people's lives and production safety. The prediction and early warning of coal mine thermodynamic disasters are mainly determined by the changes of the index gas concentration pattern in coal mine mined-out areas collected continuously. The time series anomaly pattern detection method is mainly used to reach the state change of gas concentration pattern. The change of gas concentration follows a certain rule as time changes. A great change in the gas concentration indicates the possibility of coal spontaneous combustion and other disasters. To emphasize the features of collected maker gas and overcome the low anomaly detection accuracy caused by the inadequate learning of the normal mode, this paper adopted a method of anomaly detection for time series with difference rate sample entropy and generative adversarial networks. Because the difference rate entropy feature of abnormal data was much larger than that of normal mode, this paper improved the calculation method of the abnormal score by giving different weights to the detection points to enhance the detection rate. To verify the effectiveness of the proposed method, this paper employed simulation models of the mined-out area and adopted coal samples from Dafosi Coal Mine to carry out experiments. Preliminary testing was performed using monitoring data from a coal mine. The experiment compared the entropy results of different time series with the detection results of generative adversarial networks and automatic encoders and showed that the method proposed in this paper had relatively high detection accuracy.


2019 ◽  
Vol 8 (9) ◽  
pp. 390 ◽  
Author(s):  
Kun Zheng ◽  
Mengfei Wei ◽  
Guangmin Sun ◽  
Bilal Anas ◽  
Yu Li

Vehicle detection based on very high-resolution (VHR) remote sensing images is beneficial in many fields such as military surveillance, traffic control, and social/economic studies. However, intricate details about the vehicle and the surrounding background provided by VHR images require sophisticated analysis based on massive data samples, though the number of reliable labeled training data is limited. In practice, data augmentation is often leveraged to solve this conflict. The traditional data augmentation strategy uses a combination of rotation, scaling, and flipping transformations, etc., and has limited capabilities in capturing the essence of feature distribution and proving data diversity. In this study, we propose a learning method named Vehicle Synthesis Generative Adversarial Networks (VS-GANs) to generate annotated vehicles from remote sensing images. The proposed framework has one generator and two discriminators, which try to synthesize realistic vehicles and learn the background context simultaneously. The method can quickly generate high-quality annotated vehicle data samples and greatly helps in the training of vehicle detectors. Experimental results show that the proposed framework can synthesize vehicles and their background images with variations and different levels of details. Compared with traditional data augmentation methods, the proposed method significantly improves the generalization capability of vehicle detectors. Finally, the contribution of VS-GANs to vehicle detection in VHR remote sensing images was proved in experiments conducted on UCAS-AOD and NWPU VHR-10 datasets using up-to-date target detection frameworks.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2605 ◽  
Author(s):  
Rafael Anicet Zanini ◽  
Esther Luna Colombini

This paper proposes two new data augmentation approaches based on Deep Convolutional Generative Adversarial Networks (DCGANs) and Style Transfer for augmenting Parkinson’s Disease (PD) electromyography (EMG) signals. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, simulating each patient’s tremor patterns and extending them to different sets of movement protocols. Therefore, one could use these models for extending the existing patient dataset and generating tremor simulations for validating treatment approaches on different movement scenarios.


Sign in / Sign up

Export Citation Format

Share Document