scholarly journals A Deep-Learning Model with Task-Specific Bounding Box Regressors and Conditional Back-Propagation for Moving Object Detection in ADAS Applications

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5269
Author(s):  
Guan-Ting Lin ◽  
Vinay Malligere Shivanna ◽  
Jiun-In Guo

This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objects of different sizes and applies the proposed algorithm to achieve better detection results for both larger and tinier objects. For larger objects, a neural network with a larger visual receptive field is used to acquire information from larger areas. For the detection of tinier objects, the network of a smaller receptive field utilizes fine grain features. A conditional back-propagation mechanism yields different types of TSBBRs to perform data-driven learning for the set criterion and learn the representation of different object sizes without degrading each other. The design of dual-path object bounding box regressors can simultaneously detect objects in various kinds of dissimilar scales and aspect ratios. Only a single inference of neural network is needed for each frame to support the detection of multiple types of object, such as bicycles, motorbikes, cars, buses, trucks, and pedestrians, and to locate their exact positions. The proposed model was developed and implemented on different NVIDIA devices such as 1080 Ti, DRIVE-PX2 and Jetson TX-2 with the respective processing performance of 67 frames per second (fps), 19.4 fps, and 8.9 fps for the video input of 448 × 448 resolution, respectively. The proposed model can detect objects as small as 13 × 13 pixels and achieves 86.54% accuracy on a publicly available Pascal Visual Object Class (VOC) car database and 82.4% mean average precision (mAP) on a large collection of common road real scenes database (iVS database).

Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Zixiang Yue ◽  
Youliang Ding ◽  
Hanwei Zhao ◽  
Zhiwen Wang

A cable-stayed bridge is a typical symmetrical structure, and symmetry affects the deformation characteristics of such bridges. The main girder of a cable-stayed bridge will produce obvious deflection under the inducement of temperature. The regression model of temperature-induced deflection is hoped to provide a comparison value for bridge evaluation. Based on the temperature and deflection data obtained by the health monitoring system of a bridge, establishing the correlation model between temperature and temperature-induced deflection is meaningful. It is difficult to complete a high-quality model only by the girder temperature. The temperature features based on prior knowledge from the mechanical mechanism are used as the input information in this paper. At the same time, to strengthen the nonlinear ability of the model, this paper selects an independent recurrent neural network (IndRNN) for modeling. The deep learning neural network is compared with machine learning neural networks to prove the advancement of deep learning. When only the average temperature of the main girder is input, the calculation accuracy is not high regardless of whether the deep learning network or the machine learning network is used. When the temperature information extracted by the prior knowledge is input, the average error of IndRNN model is only 2.53%, less than those of BPNN model and traditional RNN. Combining knowledge with deep learning is undoubtedly the best modeling scheme. The deep learning model can provide a comparison value of bridge deformation for bridge management.


2021 ◽  
Vol 14 (6) ◽  
pp. 3421-3435
Author(s):  
Zhenjiao Jiang ◽  
Dirk Mallants ◽  
Lei Gao ◽  
Tim Munday ◽  
Gregoire Mariethoz ◽  
...  

Abstract. This study introduces an efficient deep-learning model based on convolutional neural networks with joint autoencoder and adversarial structures for 3D subsurface mapping from 2D surface observations. The method was applied to delineate paleovalleys in an Australian desert landscape. The neural network was trained on a 6400 km2 domain by using a land surface topography as 2D input and an airborne electromagnetic (AEM)-derived probability map of paleovalley presence as 3D output. The trained neural network has a squared error <0.10 across 99 % of the training domain and produces a squared error <0.10 across 93 % of the validation domain, demonstrating that it is reliable in reconstructing 3D paleovalley patterns beyond the training area. Due to its generic structure, the neural network structure designed in this study and the training algorithm have broad application potential to construct 3D geological features (e.g., ore bodies, aquifer) from 2D land surface observations.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2664
Author(s):  
Sunil Saha ◽  
Jagabandhu Roy ◽  
Tusar Kanti Hembram ◽  
Biswajeet Pradhan ◽  
Abhirup Dikshit ◽  
...  

The efficiency of deep learning and tree-based machine learning approaches has gained immense popularity in various fields. One deep learning model viz. convolution neural network (CNN), artificial neural network (ANN) and four tree-based machine learning models, namely, alternative decision tree (ADTree), classification and regression tree (CART), functional tree and logistic model tree (LMT), were used for landslide susceptibility mapping in the East Sikkim Himalaya region of India, and the results were compared. Landslide areas were delimited and mapped as landslide inventory (LIM) after gathering information from historical records and periodic field investigations. In LIM, 91 landslides were plotted and classified into training (64 landslides) and testing (27 landslides) subsets randomly to train and validate the models. A total of 21 landslide conditioning factors (LCFs) were considered as model inputs, and the results of each model were categorised under five susceptibility classes. The receiver operating characteristics curve and 21 statistical measures were used to evaluate and prioritise the models. The CNN deep learning model achieved the priority rank 1 with area under the curve of 0.918 and 0.933 by using the training and testing data, quantifying 23.02% and 14.40% area as very high and highly susceptible followed by ANN, ADtree, CART, FTree and LMT models. This research might be useful in landslide studies, especially in locations with comparable geophysical and climatological characteristics, to aid in decision making for land use planning.


Sign in / Sign up

Export Citation Format

Share Document