scholarly journals Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5606
Author(s):  
Yung-Hui Li ◽  
Latifa Nabila Harfiya ◽  
Kartika Purwandari ◽  
Yue-Der Lin

Blood pressure monitoring is one avenue to monitor people’s health conditions. Early detection of abnormal blood pressure can help patients to get early treatment and reduce mortality associated with cardiovascular diseases. Therefore, it is very valuable to have a mechanism to perform real-time monitoring for blood pressure changes in patients. In this paper, we propose deep learning regression models using an electrocardiogram (ECG) and photoplethysmogram (PPG) for the real-time estimation of systolic blood pressure (SBP) and diastolic blood pressure (DBP) values. We use a bidirectional layer of long short-term memory (LSTM) as the first layer and add a residual connection inside each of the following layers of the LSTMs. We also perform experiments to compare the performance between the traditional machine learning methods, another existing deep learning model, and the proposed deep learning models using the dataset of Physionet’s multiparameter intelligent monitoring in intensive care II (MIMIC II) as the source of ECG and PPG signals as well as the arterial blood pressure (ABP) signal. The results show that the proposed model outperforms the existing methods and is able to achieve accurate estimation which is promising in order to be applied in clinical practice effectively.

2021 ◽  
pp. 132-143
Author(s):  
Akihiro Sugiura ◽  
Yoshiki Itazu ◽  
Kunihiko Tanaka ◽  
Hiroki Takada

2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Luo He ◽  
Hongyan Liu ◽  
Yinghui Yang ◽  
Bei Wang

We develop a deep learning model based on Long Short-term Memory (LSTM) to predict blood pressure based on a unique data set collected from physical examination centers capturing comprehensive multi-year physical examination and lab results. In the Multi-attention Collaborative Deep Learning model (MAC-LSTM) we developed for this type of data, we incorporate three types of attention to generate more explainable and accurate results. In addition, we leverage information from similar users to enhance the predictive power of the model due to the challenges with short examination history. Our model significantly reduces predictive errors compared to several state-of-the-art baseline models. Experimental results not only demonstrate our model’s superiority but also provide us with new insights about factors influencing blood pressure. Our data is collected in a natural setting instead of a setting designed specifically to study blood pressure, and the physical examination items used to predict blood pressure are common items included in regular physical examinations for all the users. Therefore, our blood pressure prediction results can be easily used in an alert system for patients and doctors to plan prevention or intervention. The same approach can be used to predict other health-related indexes such as BMI.


2021 ◽  
Author(s):  
Mohammed Y. Alzahrani ◽  
Alwi M Bamhdi

Abstract In recent years, the use of the internet of things (IoT) has increased dramatically, and cybersecurity concerns have grown in tandem. Cybersecurity has become a major challenge for institutions and companies of all sizes, with the spread of threats growing in number and developing at a rapid pace. Artificial intelligence (AI) in cybersecurity can to a large extent help face the challenge, since it provides a powerful framework and coordinates that allow organisations to stay one step ahead of sophisticated cyber threats. AI provides real-time feedback, helping rollover daily alerts to be investigated and analysed, effective decisions to be made and enabling quick responses. AI-based capabilities make attack detection, security and mitigation more accurate for intelligence gathering and analysis, and they enable proactive protective countermeasures to be taken to overwhelm attacks. In this study, we propose a robust system specifically to help detect botnet attacks of IoT devices. This was done by innovatively combining the model of a convolutional neural network with a long short-term memory algorithm mechanism to detect two common and serious IoT attacks (BASHLITE and Mirai) on four types of security camera. The data sets, which contained normal malicious network packets, were collected from real-time lab-connected camera devices in IoT environments. The results of the experiment showed that the proposed system achieved optimal performance, according to evaluation metrics. The proposed system gave the following weighted average results for detecting the botnet on the Provision PT-737E camera: camera precision: 88%, recall: 87% and F1 score: 83%. The results of system for classifying botnet attacks and normal packets on the Provision PT-838 camera were 89% for recall, 85% for F1 score and 94%, precision. The intelligent security system using the advanced deep learning model was successful for detecting botnet attacks that infected camera devices connected to IoT applications.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Sen Yang ◽  
Yaping Zhang ◽  
Siu-Yeung Cho ◽  
Ricardo Correia ◽  
Stephen P. Morgan

AbstractConventional blood pressure (BP) measurement methods have different drawbacks such as being invasive, cuff-based or requiring manual operations. There is significant interest in the development of non-invasive, cuff-less and continual BP measurement based on physiological measurement. However, in these methods, extracting features from signals is challenging in the presence of noise or signal distortion. When using machine learning, errors in feature extraction result in errors in BP estimation, therefore, this study explores the use of raw signals as a direct input to a deep learning model. To enable comparison with the traditional machine learning models which use features from the photoplethysmogram and electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical characteristics (age, height, weight and gender) is developed. This hybrid model performs best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute error being 3.23 ± 4.75 mmHg and 4.43 ± 6.09 mmHg respectively. DBP and SBP meet the Grade A and Grade B performance requirements of the British Hypertension Society respectively.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Moslem Imani ◽  
Hoda Fakour ◽  
Wen-Hau Lan ◽  
Huan-Chin Kao ◽  
Chi Ming Lee ◽  
...  

Despite the great significance of precisely forecasting the wind speed for development of the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes the prediction a complex and challenging task. For improving the security and economic performance of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used to find the best subset from the data by maximizing the joint MI between subset and target output. To enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an international airport station in the southern coast of Iran Bandar-Abbas City was used as the original input dataset for the optimized deep learning model. Based on the statistical results, the rough set LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well as traditional neural networks, with the lowest error for training and testing datasets in different time horizons. The suggested model can support the optimization of the control approach and the smooth procedure of power system. The results confirm the superior capabilities of deep learning techniques for wind speed forecasting, which could also inspire new applications in meteorology assessment.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


Author(s):  
Tossaporn Santad ◽  
Piyarat Silapasupphakornwong ◽  
Worawat Choensawat ◽  
Kingkarn Sookhanaphibarn

2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1010
Author(s):  
Nouar AlDahoul ◽  
Hezerul Abdul Karim ◽  
Abdulaziz Saleh Ba Wazir ◽  
Myles Joshua Toledo Tan ◽  
Mohammad Faizal Ahmad Fauzi

Background: Laparoscopy is a surgery performed in the abdomen without making large incisions in the skin and with the aid of a video camera, resulting in laparoscopic videos. The laparoscopic video is prone to various distortions such as noise, smoke, uneven illumination, defocus blur, and motion blur. One of the main components in the feedback loop of video enhancement systems is distortion identification, which automatically classifies the distortions affecting the videos and selects the video enhancement algorithm accordingly. This paper aims to address the laparoscopic video distortion identification problem by developing fast and accurate multi-label distortion classification using a deep learning model. Current deep learning solutions based on convolutional neural networks (CNNs) can address laparoscopic video distortion classification, but they learn only spatial information. Methods: In this paper, utilization of both spatial and temporal features in a CNN-long short-term memory (CNN-LSTM) model is proposed as a novel solution to enhance the classification. First, pre-trained ResNet50 CNN was used to extract spatial features from each video frame by transferring representation from large-scale natural images to laparoscopic images. Next, LSTM was utilized to consider the temporal relation between the features extracted from the laparoscopic video frames to produce multi-label categories. A novel laparoscopic video dataset proposed in the ICIP2020 challenge was used for training and evaluation of the proposed method. Results: The experiments conducted show that the proposed CNN-LSTM outperforms the existing solutions in terms of accuracy (85%), and F1-score (94.2%). Additionally, the proposed distortion identification model is able to run in real-time with low inference time (0.15 sec). Conclusions: The proposed CNN-LSTM model is a feasible solution to be utilized in laparoscopic videos for distortion identification.


Sign in / Sign up

Export Citation Format

Share Document